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Research h to  bdamenta l  Phenomena Associated 

with Spacecraft Electrochemical Devices - 
Calorimetry of Nickel-Cadmium Cells 

BY 
W. H. 'nlebster and R. T. Foley 

ABSTRACT 

T h i s  report suamrarirtes the work accomplished during the first nine 

months of the project. 

design and development of an isothermal continuous flow calorimeter 

capable of measuring the thermal characterist ics of bat ter ies  undergoing 

typical  o rb i t a l  cycling. 

The program has been directed toward the 

An isothermal continuous flow calorimeter was developed and 

calibrated over t h e  range of 0.10 t o  1.00 watt which range is chara- 

c t e r i s t i c  of the thermal output of a six ampere-hour nickel-cadmium ce l l .  

The thermal response was found t o  be l i nea r  i n  this range and the 

instrument was sensit ive t o  0.01 watt. 

A Gulton six ampere-hour prismatLc nickel-cadmium battery complete 

with an Adhydrode electrode was subjected to the following: 

a )  79 cycles undergoing 25% depth of discharge and 

a 110% recharge 

74 cycles undergoing 15% depth of discharge and 

a 114% recharge 

93 cycles undergoing 25% depth of discharge and 

a 114% recharge 

b) 

c )  



Euring the above testing the oxygen pressure in the c e l l  and 

the rate of heat generation by the c e l l  was recorded. 

changes (AH) corresponding t o  the reactions occurring during the 

charge and discharge processes were calculated from the thermal data. 

These values were i n  excellent agreement with the l i t e r a tu re  values 

for these reactions. 

The enthalpy 

In view of the successful operation of t h e  Instrument and the 

findings t o  date, additional tes t ing will be performed a t  various per- 

centages of recharge and depths of discharge. 
I 
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1 I. INTRODUCTION 

The major purpose of this program is  t o  t r a i n  electrochemists t o  

perform research and solve problems i n  the space battery f ie ld .  

problems are  those specif ical ly  encountered by NASA's Goddard Space 

Fl ight  Center. 

The 

During t h e  first nine months of the project,  work was performed 

a s  follows: 

1) A l i t e r a t u r e  survey in to  subjects of calorimetry 

and thermodynamics of electrochemical systems, 

specif ical ly  nickel-cadmium bat te r ies ,  was 

conducted . 
An isothermal continuous flow calorimeter was 

designed and constructed. 

2) 

3) This calorimeter was calibrated. 

4) A six ampere-hour Gulton prismatic nickel-cadmium 

battery was tes ted under the following o rb i t a l  

conditions : 

a )  79 cycles undergoing 25% depth of 

discharge and a 110% recharge 

74 cycles undergoing 15% depth of 

discharge and a 114% recharge 

93 cycles undergoing 25% depth of 

discharge and a 114% recharge 

b) 

c )  



5) C e l l  data such a s  oxygen pressure and the ra te  

of heat generation were collected and the 

changes i n  enthalpy (AH) for the s y s t e m  under- 

going the various processes were calculated. 

11. BACKGROUND AND LITERATURE REYIEW 

1 . Calorimeters ( In  General1 

The design and construction of a suitable calorimeter is one of the 

first problems encountered in measuring t h e  thermal character is t ics  of 

any system. 

hundred calorimeters have appeared i n  the l i t e ra ture .  

Fberimental Thermochemistry, Skinner points out t h e  principle factors  

which influence the choice of calorimeter design: 

During the past  t h i r t y  years, descriptions of over two 

I n  his text 
1 

(a) 

(b) 

( c )  

(d) 

(e) 

t h e  r a t e  of the reaction under investigation; 

the magnitude of t h e  heat e f fec t  t o  be measured; 

t h e  temperature of the experiment; 

t h e  leve l  of accuracy it is desired to achieve; 

the nature and number o f  phases (gas, l iquid,  sol id)  

taking par t  i n  the reaction; 

t h e  corrosive nature of the reactants; 

the pressure to be applied t o  the reactants during 

( f )  

(g) 

t h e  qeriolent. 



The first factor  is the most c r i t i c a l  for it determines t h e  

duration of the experiment. 

experiments are best studied i n  non-isothennal type calorimeters. 

these calorimeters the heat l iberated (or absorbed) by the reaction 

causes a proportional change i n  the temperature of the calorimeter, 

Non-isothermal calorimeters are  operated e i the r  under adiabatic con- 

di t ions,  or with constant temperature environment. 

calorimeters are  used t o  investigate reactions of only moderate speed 

w h i l e  constantte~erature-environment calorimeters are  used t o  investigate 

f a s t  reactions. 

2. Constanttemperature=enviro~ent calorimeters 

Fast (2 15 - 20 min.) and moderate speed 

I n  

The adiabatic 

A constanttemperature=environment calorimeter is completely encased 

i n  a jacket of constant and uniform temperature f o r  the purpose of 

defining t h e  thermal head between t h e  calor iaeter  and i ts  surroundings. 

Skinner 

the leakage modulus (degree/sec.) should be constant within limits of 

about 2 percent, and a s  small as is practicable. 

of design should invariably be m e t :  

2 
states tha t ,  9.n a well-designed calorimeter and jacket system, 

The following points 

(a) The jacket w a l l s  must be of uniform temperature through- 

out the experiment. 

The outside surface of the calorimeter and t h e  inner 

surface of t h e  jacket should be highly polished i n  order 

t o  minimice heat t ransfer  by radiation between them. 

The air-gap between calorimeter and jacket should be 

evacuated, i f  possible, to  reduce t ransfer  by conduction. 

(b) 

( c )  

- 3 '  



(d) I f  it is impracticable to  evacuate the air-gap, this 

should not a t  any point exceed about 12 mm i n  thickness, 

i n  order t o  minimize transfer by convection. 

I f  the calorimeter contains a l iquid,  the s t i r r i n g  must 

be good enough t o  insure uniformity of the calorimeter 

temperature, and the s t i r r ing  ra te  must be kept constant 

t o  insure constant heat of s t i r r ing  throughout t h e  

exprimen t . 
I f  the calorimeter contains a l iquid,  it should preferably 

be completely sealed, t o  prevent evaporation lo s s  during 

(e) 

( f )  

2 the experiments ." 
3. Adiabatic Calorimeters 

An adiabatic calorimeter operates by maintaining zero thermal head 

between the calorimeter and i t s  jacket. 

jacket and calorimeter temperatures is difficult, t h i s  type of calorimeter 

is not used f o r  f a s t  reactions. 

4. Isothermal Phase-change Calorimeters 

Because the task of matching 

The only t n m  isothermal calorimeters are  those which use a phase 

The change as a measure of the amount of heat produced by a reaction. 

most c lass ical  example of this type of calorimeter is the  h s e n  i c e  

calorimeter. I n  this type one has i c e  and water i n  equilibriwn i n  a 

closed system and the heat l iberated by the reaction produces a decrease 

in t h e  volume which is measurable. 

phase calorimeter is the liquid-vapor calorimeter which was developed by 

Kraus e t  al .  

metals and various metall ic salts i n  boiling ammonia. 

Another example of this type of 

3 f o r  the measurement of the heats of solution of a l k a l i  

- 4 -  



I n  general this type of calorimeter limits t o  a great extent the 

temperature a t  which t h e  reactions can be investigated. 

5. Continuous-flow Liquid Cekorimeters 

T h i s  type of calorimeter i s  not exactly isothermal - it  might be 

more accurately described a s  "very nearly" isothermal. The phase 

change type of calorimeter i s  t h e  only pure isothermal calorimeter. 

I n  a continuous flow l iquid calorimeter the temperature of the l iquid 

is known and monitored a s  it enters the reaction chamber and passes 

over the heat generating source. The outstanding advantage of this type 

of calorimeter is t h a t  it isothermally measures the heat generated over 

long periods of time. 
4 

I n  1866, Callender used a continuous e l ec t r i ca l  calorimeter t o  

explore applications of a platirnrm thermometer. 

apparatus consisted of a glass  tube approximately 30 cm. long and 3 m 

T h i s  first rough 

in diameter through which passed a steady stream of water. 

was heated by a platinum resistance heater which nearly f i t t e d  the tube. 

The water 

A p a i r  of mercury thermometers were used t o  measure the steady difference 

i n  temperature between the inflowing and the outflowing water. 

e l ec t r i ca l  energy supplied t o  the heater was measured by potentiometric 

techniques . 
The 

Because of external heat losses, errors i n  e l ec t r i ca l  units, etc. 

t h e  resu l t s  of these experiments were of l i t t l e  o r  no value. 

the series of preliminary experiments did suggest to Collender a 

solution t o  one of the most basic problems confronting the science of 

calorimetry, i . e .  a lack of knowledge of the  heat capacity of water 

over i t s  en t i r e  temperature range from 0' to 100' C. 

could be determined by this new method of calorimetry, i.8. a continuous 

However 

The heat capacit ies 



L 

or steady flow method i n  which a stream of l iqu id  could be made t o  

continuously carry off a defini te  and measurable supply of heat. 

I n  1902, Barnes published a completa set of experimental values 

f o r  the heat capacity of water from 0' to 100' C determined with a 

contimous=flow l iqu id  calorimeter. 

i n  10,000 of t h e i r  true values. 

The results were accurate t o  1 par t  

The general theory of a continuouleflaw l iquid calorimeter a s  

stated by Barnes is: 

I f  w e  have a flow of l iquid,  Q per second, continuously 

heated by an e l ec t r i ca l  current i n  a f ine  tube enclosed 

i n  a vacuum-jacket, the walls of which are maintained 

a t  the temperature of the l iquid flowing in to  the f ine  

tube, then when equilibrium has been established, 

Js Qt (% - eo> + (el - eo> h t  = E C t  

where 

J is the mechanical equivalent of heat, 

s t h e  specif ic  heat of the l iquid,  

eo t h e  temperature of the inflowing l iquid,  

el the temperature of the outflowing l iquid,  

h t h e  heab loss  per degree difference i n  

temperature between the surface of the f ine  

tube and t h e  walls of the vacuum-jacket, 

EC the e l ec t r i ca l  energy generated per sec., and 
5 t t h e  time of the flow. 

- 6 -  



To fur ther  appreciate the method, a diagram of t h e  continuous- 

flow l iquid calorimeter i n  its simplest fona is shown i n  figure 1. 

Fig. 1. Diagram of Barnes' Continuous-flow l iquid Calorimeter (Ref.5) 

I n  this diagram AB represents the f ine  tube i n  which 

the water is heated while flowing through V, the vacuum- 

jacket, and C & P, the inflow and outflow tubes 

connected t o  AB, i n  which the thermometers a re  placed. 

The water- jacket is shown a t  W, and includes the 

vacuum-jacket and inflow tube C. 

t h e  calorimeter a t  E from a reservoir separate from 

The water enters 

t h a t  supplying the water for the jacket, but main- 

tained a t  the same temperature. The e l ec t r i c  heating 

current passes through the f ine tube AB through a 

platinum wire extending the whole length, but is 

arranged so a s  not t o  generate beat i n  the v ic in i ty  

of the thermometer bulbs. The thermometer i n  C 

measures the temperature $of the inflowing water, 

and that i n  P the teaperature 5 of the outflowing 

water, warmed by the passage of the e lec t r i c  

current. 6 

- 7 -  
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principle of continuous flow caloriaetry a8 

and Barnes to the deternination of the heat 

I n  1922, Keys, Gillespie and Netsukui WrccessfUly applied the 

developed by Callender 

of neutralization. The 

principle of the method and the general apparatus are demonstrated i n  

the following procedure . 
Two reservoirs containing the reacting l iquids  were placed i n  a 

constant temperature beth [T 0.1OC’J. 

t o  a mixing calorimeter housed i n  a precision thermostat which was 

controlled to  i O.O0loC. 

platinum thermometer i n  the mixing chamber and one i n  the precision 

thermostat was a measure of the heat l iberated as the reaction proceeded. 

The above investigators, using hydrochloric acid and carbonate 

f ree  sodium hydroxide, found a heat of neutralization of 13,280 calor ies  

per mole which agreed with the l i t e r a tu re  value fo r  the same reaction. 

However,this agreement was based on a correction factor  being intro-  

duced as was pointed out by Roughton i n  1930. 

Silver co i l s  deliver the l iquids  

The difference i n  temperature between a 

The correction due t o  exchange of heat with the 

surroundings was found t o  vary between 2 percent 

and 6 percent, according a s  the velocity of the 

f lu id  was varied from 3.6 cc. per second t o  1.2 cc 

per second. 
8 

Roughton was able t o  reduce this correction factor  by immersing the 

en t i r e  apparatus i n  a constant-temperature bath, by increasing the 

velocity of the reactants t o  f a c i l i t a t e  mixing i n  0.01 secs, and 

increasing the sens i t iv i ty  of the thermometers by using a more sensit ive 

galvanometer. 



These l a s t  two examples i l l u s t r a t e  the development of l iquid 

flow calorimeters as  w e l l  a s  calorimeters in general, i.8. the basic 

purpose of a l l  calorimeters i s  t o  measure heat and the best container 

fo r  so doing is dependent upon the nature of the reacting species with 

the most accurate measurement being determined by the then available 

instruments such as  galvanometers, thermometers, constant-temperature 

devices, etc. 

I n  1964, Caulder reported i n  h i s  thesis  the development of a l iquid 

flow calorimeter, "for t h e  specific purpose of measuring the ra te  of heat 

evolved during an operational cycle of a Ni-Cd electrochemical cell.8o 

The apparatus consisted of a s ta inless  s t ee l  chamber large enough t o  

accommodate a nickel-cadmium battery and a calibration heater. This  

chamber was surrounded by an a i r  jacket which contained entrance and ex i t  

tubes t o  the calorimeter. 

were then immersed i n  a thermal bal las t  tank f o r  isolat ing the system 

from i ts  surroundings. A l iquid,  e i ther  water or  a l i g h t  weight hydro- 

carbon o i l ,  was circulated through the system continuously passing over 

the heat generating source. 

t o  O.O0loC v ia  a heat exchanger placed i n  the thermal ba l las t  tank 

through which the l iquid flowed before entering the top of the calorimeter. 

A t  the entrance and exit ports of the calorimeter were placed t h e  hot 

and cold junctions of a twenty-junction copper-constant thermopile fo r  

detecting any changes in the temperature a s  a r e su l t  of the reaction 

taking place. 

9 

The ca lo rbe te r  and a i r  jacket surrounding it 

The temperature of the l iquid was controlled 

External of t h i s  thermal bal las t  tank which contained (1) the 

calorimeter; (2) a i r  jacket; ( 3 )  heat exchanger and (4) the stirrer were 

the devices fo r  controlling the flow ra te  of the l iquid and a constant- 

- 9 -  



temperature bath f o r  regulating the temperature a t  which the experiment 

would be performed (O-lOO°C) . 
The l iqu id  was circulated throughout the en t i re  system by a 

constant volume metering pump which would draw the l iqu id  from the 

base of the thermal ba l las t  tank and deliver it t o  the external heat 

exchanger. From the external heat exchanger the l iquid then proceeded 

t o  a reservoir 8 f e e t  above the instrument and from here v i a  a gravity 

feed into the in te rna l  heat exchanger i n  t h e  thermal ba l las t  tank, 

thus completing the cycle. 

Caulder calibrated this instrument i n  the region corresponding t o  

the heat l iberated by a Ni-Cd battery, i . e .  0.1-1.0 watt. 

calibration experiment was performed by passing a known amount of 

current through a calibration heater (constantan wire) wi th  a known 

resistance and plott ing the watts i n  against the microvolt signal output 

from the 20 junction copper constantan thermopile. 

were performed a t  several different  temperatures (2j0, 26O, 10°C) using 

e i ther  water o r  o i l  as t h e  liquid. 

signal obtained f o r  each s e t  of conditions. 

A typical 

These experiments 

I n  Table I appears t h e  maximum 

Another interest ing observation from Table I i s  the comparison 

of the resul ts  obtained by varying the flow r a t e  of the o i l .  

of the signal doubling when t h e  flow ra t e  was decreased by 5096, the 

signal was cut i n  half. 

Instead 

Both of these abnormalities can probably be at t r ibuted t o  t h e  

direction of the flow through the calorimeter, Also, it should be noted 

tha t  any trouble would most l i ke ly  be seen during the o i l  experiments 

since the accuracy and precision a re  much greater  because of the low 

specific heat of the o i l .  

w 



Temp . 

2 3OC 

23OC 

26OC 

10°C 

TABLE I. 

Caulder's Calibration Data 

Media Flow Rate Watage i n  Signal Out  
(cal. heater)  

oil 

oil 

water 

water 

0.6 

1.0* 

14.0 

14.0 

* Beyond this point the response was no longer l inear.  

e f f e c t  i s  at t r ibuted t o  the positioning of t h e  cold junction 

of the thermopile a t  t h e  t o p  of the calorimeter w i t h  the flow 

of l iquid entering from the top, passing across t h e  heater and 

exi t ing v ia  the bottom. That i s  t o  say, heat has a natural 

tendency t o  r i s e  thus affecting the readings obtained a t  the cold 

junctions of the thermopile. 

This 

- 11 - 



After completing the cal ibrat ion experiments, Caulder reported 

several  heat prof i le  experiments on Ni-Cd ce l l s ,  

cussion o r  interpretat ion o f  the r e su l t s  appeared. 

Summary of Calorimeters 

A t  t h a t  time no dis- 

The controll ing fac tors  i n  the type and design of  a calorimeter 

are  dictated by the nature of the reaction and the type of information 

we desire t o  obtain from said reaction. Since i n  t h i s  report  we a r e  

concerned with the heats of reaction and the heat prof i le  of nickel- 

cadmium bat te r ies  under operating conditions of continuous charge and 

discharge, a l l  forms of non-isothermal calorimeters, such a s  adiabatic 

calorimeters, are  eliminated. I n  the case of  non-isothermal calorimeters 

any heat l iberated by the reaction under study i s  additive. Over a 

long term study, such as  t h a t  equivalent t o  f i f t y  o rb i t s  around the  

ear th ,  we would no longer be evaluating the reaction a t  25OC but a t  

25 C plus the heat l iberated during each orbi t .  

t h e  temperature l imit ing capabi l i t i es  of the isothermal phase calorimeter, 

the choice is limited t o  the "very nearly isothermal'' continuous flow 

calorimeter, 

constructing a continuous-flow l iqu id  calorimeter similar t o  t h a t  

reported by Caulder with improvements i n  design i n  order t o  obtain greater  

sens i t iv i ty  . 

0 
However, because of 

It is f o r  these reasons t h a t  t h e  work was i n i t i a t e d  by 

Before passing d i r ec t ly  i n t o  the construction of the calorimeter 

and the experimental sections, additional 

the par t icular  type of ce l l  which w i l l  be 

significance of the thermal data obtained 

background is f'urnished on 

investigated and the  

from these investigations. 

- 12 - 
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6. Nickel-Cadmium Batteries 

The typical nickel-cadmim c e l l  used i n  the space program i s  a 

hermetically sealed c e l l  containing al ternate  posit ive (nickel) and 

negative (cadmium) plates  separated by a single ply non-woven material. 

The c e l l  contains only enough electrolyte (potassium hydroxide) t o  

completely saturate the electrode separator pack. The interelectrode 

distances are  minimized t o  f a c i l i t a t e  high ra te  operation and enhance 

mass transfer from positive t o  negative electrodes during overcharge. 

It is during overcharge tha t  oxygen,generated from the posit ive plate,  

migrates toward the negative plate. 

electrochemically wi th  the cadmium electrode a t  the same ra te  a t  

which it i s  generated as  long as  the overcharge r a t e  doesn't exceed 

c/10 a t  25OC. 

greater  than c/10 i s  required to  maintain a fu l ly  charged cell .  

The oxygen i s  able to  recombine 

For most spacecraft applications a recharging ra te  

Charge control by voltage monitors, temperature sensors, and ampere- 

hour integrators  have been used i n  the past. These devices a re  bulky, 

add extra weight t o  the spacecraft, and i n  cer ta in  instances have been 

found t o  be unreliable. 

A def in i te  sudden shift i n  the voltage a t  the end of charging is 

used to  tenninate the charging process i n  silver-cadmium cel ls .  

. . "for nickel-cadmium c e l l s  there i s  no sharp phase t ransi t ion a t  

f u l l  charge since the nickel oxides a re  not present a s  discrete  thenno- 

dynamic compounds, but rather a s  solid solutions of nickel oxides varying 

gradually i n  average valence, and hence potential ,  a s  the electrode 

changes." 

f o r  controlling the charge rate  has been described by Seiger, Shair, and 

Rittennan.ll 

However 

10 
I n  nickel-cadmium bat ter ies  the use of an auxLliary electrode 

One electrode of t h i s  type i s  called an Adhydrode. The 

- 13 - 



Adhydrode reacts with the owgen liberated a t  the completion of 

charging t o  generate a voltage signal which t r iggers  a control c i rcu i t .  

The manufacturer's description of a nickel-cadmium battery with 

Adhydrode is given in Table 11. 

7. Adhvdrode 

The operation of t h e  Adhydrode is explained by Seiger, Shair, and 
11 

The Adhydrode is an electrode which contains hydrogen 

R i  t terman. 

atoms, i n t e r s t i t i a l l y  a s  well as  on i t s  surface. 

reaches the surface of such an electrode, it is reduced by 

reaction w i t h  hydrogen atoms. 

on several ca ta ly t ic  materials a t  a potent ia l  of -0.8 vo l t s  

("E). . . . The electrochemical and chemical reactions 

which are  consistent wi th  the experimental observations a t  the 

. potential  of -0.8 V i n  a concentrated aqueous KOH colution a t  

room temperature are  given by the following equations: 

When oxygen 

The Adhydrode mechanism occurs 

1.) 4 H  0 + 4e-(M) % 4H(M) + 40H- 
2 

3 . )  2H 0 + O2 + 48' .-> 4OH- 2 
A second electrode is required t o  supply the electrons t o  eqn. 1, 

and a lso  t o  maintain the potential .  The appropriate potential  

is obtained by connecting the auxiliary electrode t o  the negative 

(Cd) electrode. 

electrode (eqn. 3) indicates a consumption of water. The electro- 

. . . The overall  process a t  the auxiliary 

ly t e  i n  the neighborhood of the auxiliary electrode concentrates 

SO t ha t  a wick must be supplied t o  accelerate water transport. 



TABLE 11 

Specifications f o r  Adsorption Hydrogen 
Electrode (&Amp-Hr Cells ) 

AUXILIARY ELECTRODE 

Number of auxLliary electrodes used per cel l :  one 

Dimensions: Length 20.55 cm 
Width 1*79 
Thickness 0.066 cm 

Location of a m l i a r y  electrode in the cell :  edge of the pla te  

pack on two sides and the bottom. 

Internal  impedence of awdliary electrode w i t h  respect t o  

cadmium electrode: approximately 7 ohms. 

Type of electrolyte  wicMng used fo r  auxiliary electrode: 

pellon (2505 Series) . 
NICKELCADMIUM ELECTRODES 

Nickel Plate 

Number of plates  per cel l :  9 

Dimensions: Length 5.51 cm 
Width 4.80 cm 
Thickness .OW cm (per plate)  

Weight of active material: 33.3 gm fo r  9 plates  

Cadmium Plate  

Number of Plates per cell :  10 

Dimensions: Length 5.51 cm 
Width 4.80 cm 
Thickness 0.76 cm (per plate)  

I 

Weight of active material: 39.0 gm for 10 plates  



According to  eqn. 2, assuming t h i s  step to  be r a t e  

determining, the Adhydrode current ia w i l l  be dependent 

upon the oxygen p a r t i a l  pressure. 
11 

Many of the operating parameters of the Adhydrode have been described 

by Sizemore.12 I n  h i s  t e s t s  each battery was f i t t e d  wi th  piezo- 

res i s t ive  pressure transducer t o  correlate Adhydrode signal wi th  the 

oxygen pressure, 

was t o  place a known resistance externally across the Adhydrode and the 

negative o r  cadmium electrode o f  the battery. 

t e s t  

varying from 0.5 ohms t o  5lO ohms. 

maximum power point f o r  a given pressure occurs when an euxiliary 

electrode resistance of about 7 ohms was used. 

(28 psia) and resistance (6.8 ohms) the Adhydrode signal was found t o  

increase with temperature, i.8. 0 C.- 150 mv, 2fi°C - 175 mv, and 

4OoC - 200 mv. 

The procedure f o r  measuring the Adhydrode signal 

The c e l l s  i n  the above 
1 3  were evaluated using external auxiliary electrode resistances 

These t e s t s  indicated tha t  the 

For a given pressure 

0 

1 

I 



c 

I 
c 

8. Thermodynamics and Electrochemical Calorimetry 

The majority of electrochemical reactions are  investigated under 

equilibrium conditions, i.e. when no pressure-volume work i r r  purfonned 

as  the r e su l t  of gas evolution or when no current is being passed 

through the c e l l  while e.m.f. data is being accumulated a t  various 

temperatures. The enthalpy change (AH) f o r  such reactions i s  then 

calculated using the Gibbs-Helmholtz equation: 

I 

T h i s  method unfortunately yields  no information about a c e l l u n d e r g b l g  

an i r revers ib le  thermodynamic reaction such a s  the discharge of a 

nickel-cadmium battery. 

via t h e  first law of thermodynamics ( m  = q-w) which is not limited by 

the revers ib i l i ty  of a process. 

any change in the enthalpy ( m )  is equal t o  the change i n  internal  

However, one is able t o  evaluate such a reaction 

14 Also, it is noted tha t  by defini t ion 

energy ( h E )  plus the. pressure-volume work done (PV). 

A H = b E + P V  

However, f o r  a hermetically sealed nickel-cadmium battery undergoing a 

discharge reaction no PV work i s  performed. 

Therefore, fo r  the discharge reaction of the nickel-cadmium battery 

the enthalpy charge (AH) i s  calculated from 

AH = q - (e lec t r ica l  work) 

where -q i s  t h e  heat l iberated by the reaction or  system and detected 

by the  calorimeter and t h e  e lec t r ica l  work i s  equal t o  t h e  potential  (VI 

drop across the c e l l  terminals while the c e l l  is being discharged a t  a 

constant current "1" such tha t  We = (V)(I) = watts. 



From a thermochemical standpoint, the discharge process can be 

represented by the following reaction a s  discussed by Metzger, keinreb, 

and Sherfey: 15 

16 These authors used the l i t e r a tu re  

of formation o f  t h e  reactants and products which are  respectively 

-162.1, 0.0. -128.6 and -133.3 kcal mole-’. 

values for  t h e  standard molar heats 

Then,applying Hess’ Law, 

they calculated the AH of the reaction a s  -66.3 kcal mole ” o r  -33.1 

kcal equiv-’. 

There is very close agreement between this calculated value fo r  t h e  

discharge process and the experimental resu l t s  obtained by several 

investigators who applied the above technique t o  an adiabatic calorimeter. 

These values are  compared i n  Table 111. 

The authors, whose work is reported i n  Table 111, chose an adiabatic 

type of calorimeter because of i t s  ease of construction and t h e  type of 

information being sought. 

data f o r  cycle a f t e r  cycle, a s  w e l l  a s  enthalpy data,  t h e i r  choice would 

very l ike ly  have been a continuous flow calorimeter i n  which heat is 

not accumul8ted from cycle t o  cycle. 

However, i f  t h e  task was t o  obtain heat prof i le  

18 - 
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TABLE 111. 

Comparison of AH Values Obtained i n  
Several Adiabatic Calorimeters 

Author 

Metzger, Weinreb, Sherfey 

Metzger, Sherfey 

Bruins, Caulder, Salkind 

Ref e renc e 

915 

917 

#10 

AH kcal/equiv 

33 .2,32 8,32.?, 32 6,31 8 

33.0 

33.1 

i 
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III. APPARATUS 

1. General Comments 

On t he  basis  of what has been reported i n  the l i t e r a t u r e  it has 

been concluded t h a t  the  continuous flow calorimeter was most suited fo r  

investigations of the  heat e f fec t  of ba t te r ies  which a re  subjected t o  

continuous o rb i t a l  conditions. The contimous flow calorimeter was 

constructed using components available from a previous investigation 

which was conducted i n  this Laboratory by S. M. Caulder under t h e  

direction of J. M. Sherfey of NASA Space Flight Center, Greenbelt, 

Maryland. A large number of improvements and a l te ra t ions  were made t o  

t h e  original apparatus design of Sherfey, a s  described i n  Caulder's 

thesis .  9 

2. Improvements and Modifications 

a )  The direct ion of l iqu id  flow through t h e  calorimeter was 

reversed, t h a t  is, the oil was introduced a t  the bottom of the calorimeter 

a t  which point it was sensed by the  cold junction of the  thermopile, 

next it passed over the heat generating source ( c e l l ,  heater) and f ina l ly  

exi t ing a t  the top of t h e  calorimeter where the hot junction of the  

thermopile was positioned. 

b) The number of copper-constantan couples in the thermopile 

was increased from 20 t o  25, thus increasing the  sens i t i v i ty  of same 

and enabling one t o  detect  a temperature difference of 0.00096 C. 
0 

c )  The junctions of the thermopile were positioned i n  the center 

of the f low stream by fixing same with epoxy cement i n  a 0.75 in.  diameter 

acry l ic  pipe which is adjusted i n  and out by means of a s t a in l e s s  steel 

"Conax" compression f i t t i n g  which is fastened a t  the top and bottom of 

the  calorimeter. 

- 20 - 
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d) The in te rna l  diameter of the e x i t  pipe on top of the 

calorimeter was reduced from 2 in .  to 1.5 in .  so t ha t  it was the same 

size  a s  t h e  entrance pipe a t  the bottom of the calorimeter. 

e )  A special f ix ture  was constructed from Lucite f o r  locating 

t h e  exact position of the battery and calibration heater a t  a l l  times 

i n  t h e  calorimeter. See Fig. 2. 

f )  The constant level reservoir and 16 f e e t  of pipe used t o  

del iver  the l iquid to and from t h e  reservoir were eliminated. 

device had been used to  maintain a constant flow of l iquid through t h e  

calorimeter which actually is a duplication of the function of the 

constant volume metering pump. 

The 

g) Substitution of polyvinyl chloride pipes f o r  previously used 

cas t  i ron  pipes eliminated any by-products of corrosion from t h e  system. 

h)  The sens i t iv i ty  of measurement was increased by using 

a l i g h t  weight hydrocarbon oi l*  w i t h  a heat capacity lower than water. 

The above engineering changes had the overall  e f fec t  of increasing 

the signal by a factor  of 28. 

a t  25 C i n  oil msy be compared t o  Caulder's signal of 8 microvolts a t  

1.0 watt i n  oil a t  23OC (see Table I) . A more detailed discussion of 

the results appears i n  the calibration experimental section. 

proceeding in to  the experimental section a detailed discussion of the 

components of the apparatus and the i r  manner of construction a re  presented. 

The apparatus consists of two separate systems: 

t ing  system (Fig. 3) and (2) t h e  e lec t r ica l  system (Flg. 9). 

A signal of 220 microvolts fo r  1.0 watt 
0 

Before 

(1) the l iquid circula- 

The l iqu id  

* Marcol 70 obtained from Humble Oil  Co. 
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FIGURE 2. L U C I T E  FIXTURE SHOWING P O S I T I O N  

OF N L C d  C E U  AND HEATER 

6 A H - N i C d  
B a t t e r y  
(Gul ton) 

Cali brat ion Heater t 

-Brass 
Connectors 

A. Heater Current Leads  
8. Heater Voltage Leads 
C. Cel l  Voltage Leads 
D. Cell  Current Leads 
E, Adhydrode Leads  
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c i r c u l a t h g  system then was subdivided in to  those components contained 

i n  the thermal ba l las t  tank and those external of it. 

3 . Internal  Circulating System 

a )  Console 

F i r s t ,  it was necessary to  construct a console t o  house the thermal 

ba l l a s t  tank. 

s t e e l  sections t o  the dimension of 18 in. x 24 in .  x 48 in. The f loor  of 

the console consisted of two 0.75 in.-thick pieces of plywood separated 

The frame was fabricated from 1.25 in .  ItUn shaped channel 

by 1.25 in. a i r  space which aided i n  insulating the thennal ba l las t  tank 

from the surroundings. 

0.09 in .  aluminum sheet and covered with a 0.25 in.-thick aluminum plate. 

Rising above the console f o r  another 3.5 f ee t  was s t ee l  channeling fo r  

use as  a supporting structure fo r  mounting various devices such a s  

pulleys, e l ec t r i c  motors, eta. 

cas te rs  fo r  mobility. 

The console was enclosed on four sides w i t h  

The ent i re  structure was then mounted on 

Finally, before placing the thermal ba l l a s t  tank i n  the console 

it was wrapped with 2 in.-thick polyurethane foam. 

spaces between the thermal ba l las t  tank and t h e  walls of the console 

a re  f i l l e d  with fiberglass insulation, 

Any remaining air 

b) 

The f’unction of the 40-gallon tank was to maintain the calorimeter 

Thermal Ballast Tank (Figs, 4 & 5 ) *  

environment a t  the desired operating temperature. 

s t ructed from 0.06 in.-thick type 316 stainless  steel .  

(Fig. 4) separates the tank i n to  two compartments. The larger  compartment 

houses the calorimeter and i ts  a i r  jacket while the smaller contains the  

heat exchanger and s t i r r e r .  

proper m i h g  similar t o  the arrangement in a melting point apparatus, 

The tank was con- 

A par t i a l  par t i t ion  

The function of two compartments is t o  insure 
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D, CALIBRATION HEATER 

B- 

C- 

D -  

E- 

F / 

i 

K, HEAT EXCHANGER 

CONSTANT 
TEMPERATURE BATH 

METERING PUMP 

FIGURE 3 LIQUID CIRCULATING SYSTEN 
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FIGURE 4. THEXMAL BAUAST TANK - 
TOP V I E W  (Ref. 9) 

. 



RGURE 5. THERMAI, BALLAST TANk 

(Ref. 9) 



The tank is insulated a s  described above and a l l  pipes having contact 

w i t h  or passing through the walls of  the tank are  made of polyvinyl 

chloride t o  minimiee heat transfer. 

c)  Calorimeter (Fig. 6). 

The calorimeter was constructed large enough so tha t  the heat 

generating device and calibration heater would not impede the flow of 

the l iquid nor make contact with the walls. 

it was constructed a s  sleall a s  possible so t ha t  the r a t e  of flow of the 

o i l  was suff ic ient ly  rapid t o  maintain essent ia l ly  isothermal conditions. 

The calorimeter was fabricated from type 316 s ta in less  steel 0.09 in .  

However, a t  the same time 

thick 

6 in.  

p la te  

5 in.  

i n  the form of a r igh t  c i rcular  cylinder 4.5 in.  diameter and 

high having a volume of 107.3 in.3 Centrally located on the bottom 

was welded 1.5 in.  diameter s ta inless  s t ee l  tube approldmately 

long wi th  an end threaded t o  which was attached a polyvinyl chloride 

plumbing tee. 

diameter copper tube through which flowed the oil from the internal  heat 

exchanger. 

rubber stopper fo r  positioning the cold junction of the thermopile which 

was contained i n  a 0.75 in. diameter acryl ic  pipe. 

calorimeter was a removable s ta inless  s t ee l  l i d  which was secured by 

s ta in less  s t e e l  screws and an O-ring compression seal. 

prevented leakage from the calorimeter i n to  the a i r  jacket chamber. 

2 in. stainless s t ee l  pipe 8 ins.  i n  length threaded on one end was welded 

t o  the center of the top plate. 

reduced t o  1.5 in. t o  correspond t o  the  bottom tube and to concentrate 

t h e  heat bearing l iquid on the thermopile. 

The horizontal position on the tee  received a 0.75 in. 

The ver t ica l  position on the tee received a center d r i l l ed  

The top of the 

The O-ring sea l  

A 

The in te rna l  diameter of this tube was 

Attached t o  the end of this 



tube was a polyvinyl chloride plumbing tee. 

of the tee  was placed a polyvinyl chloride cap fo r  receiving a stainless 

steel nConax'l compression f i t f h g  which was used f o r  positioning t h e  

hot junction of the thermopile with reference t o  t h e  e d t  of the 

calorimeter. 

polyvinyl chloride pipe fo r  returning t h e  heated l iquid back t o  the 

thermal bal las t  tank. 

I n  the ve r t i ca l  opening 

I n  the horizontal opening was placed a 0.75 in.  diameter 

d )  A i r  Jacket (Fig. 6) 

The calorimeter is surrounded by an a i r  jacket t o  minimiee 

heat t ransfer  through t h e  calorimeter wall. 

calorimeter and t h e  inner surface of t h e  air jacket are  polished i n  

order t o  minimize heat t ransfer  by radiation. 

fabricated from type 316 s ta in less  s t e e l  0.12 in .  thick i n  the form of a 

r igh t  c i rcular  cylinder 8.0 in .  diameter and 11 in. high. 

plate  of the jacket was welded t o  t h e  calorimeter entrance tube approx- 

imately 3 in.  beneath the calorimeter. 

designed so t ha t  it was removable and could s l ide  up and down the exit  

tube of the calorimeter. 

by means of s ta in less  s t e e l  screws and an O-ring seal. 

a O-ring compression seal  around the exit  pipe of the calorimeter and 

the l i d  of the jacket t o  prevent leakage from the thermal ba l las t  tank 

i n to  the a i r  jacket. 

legs  are  mounted on the base of the a i r  jacket t o  support it and the 

calorimeter. 

e )  

The in te rna l  heat exchanger provides a means of f ina l ly  Wuil i -  

The outside surface of the 

The a i r  jacket was 

The bottom 

The l i d  of the a i r  jacket was 

The l i d  i s  secured t o  t h e  top of the air jacket 

Also, there is 

finally, four 12 i n .  long polyvinyl chloride 

Internal  Heat Exchanger (Figs. 3 & 7)  

brating the inflowing oil from the external c i rculat ing system with the 

I 
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oil i n  the thermal ba l las t  tank before it enters the calorimeter. 

The heat exchanger was constructed by placing four 0.875 in .  diameter 

copper tubes i n to  two copper manifolds (Fig. 7).  The bottom manifold 

i s  connected t o  the external circulating system by a polyvinyl chloride 

pipe which passed through the thermal ba l las t  tank wall. 

manifold is connected to  the calorimeter by a copper tube coupling 

device. 

holes dr i l led  through them a t  90' angles and 1.0 in.  apart;  0.25 in. 

by 0.25 in.  solid copper rods which a re  notched a t  both ends and inserted 

through these holes, passing through the tubes and having the notched 

ends exposed on both sides of t h e  tube. 

baffle any o i l  being drawn up externally to  the heat exchanger by the 

action of the s t i r r e r  thus eliminating streamers of hot and cold o i l  

throughout the thermal ba l las t  tank. 

The top 

The four copper tubes of the heat exchanger had O.25-in. 

T h i s  arrangement serves t o  

f )  S t i r r e r  (Fig. 3) 

The s t i r r e r  is powered by 1/10 h.p. variable speed e l ec t r i c  

motor which is mounted on the super s t ructure  of the console. 

rubber be l t  passes between the motor and a wheel which is mounted on a 

bearing housing. The bearing shaf t  is made of Bakelite and is coupled 

t o  a 0.50 in.  diameter s ta inless  s t ee l  s t i r r e r  shaf t  which passes through 

the center of the heat exchanger. 

exchange there is a bronze bearing through which the shaf t  passes thus 

eliminating whiplash. 

small brass propeller. 

A V-shaped 

On the bottom manifold of the heat 

A t  the end of the s t i r r e r  shaf t  is mounted a 



FIGURE 7. INTERNAL HEAT EXCHANGER (Ref. 9 )  
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4. External Circulatina System 

a )  pump (Fig.  3) 

The o i l  i s  dram off a t  the lower l e f t  side of the thermal 

ba l l a s t  tank (fig.  3) and passes through 0.75 in.  diameter polyrinyl 

chloride pipe t o  a pump. A 1/2 h.p. Milton Roy controlled volume pump 

was used t o  circulate the oil through the system a t  a specified rate. 

The capacity of the pump ranged up t o  4400 cc/min and was adjustoble 

by varying t h e  stroke of the plunger. Because this pump operated on a 

70 cycle frequency it was possible t o  eliminate the constant level 

reservoir which was previously used by Caulder i n  conjunction wi th  the 

pump t o  deliver a constant volume of l iquid through the system. 

9 

b) Constant Temperature Bath 

An Aminco Wide-Range Laboratory Bnth was used because of i t s  

T h i s  bath could wide temperature range capabi l i t ies  (-29OC t o  +71°C). 

be maintained within fO.Ol°C. The o i l  passed from it through a polyvinyl 

chloride pipe t o  the manifold of in te rna l  heat exchanger i n  the thermal 

ba l l a s t  tank where the f i n a l  temperature equilibrating occurred. 

c )  External Heat Exchanger 

By external is meant external t o  the thermal ba l las t  tank. 

T h i s  heat exchanger i s  located i n  the Aminco Wide-Range Laboratory Bath 

and it equilibrates the o i l  t o  the approximate temperature of the 

experiment before it enters  the thermal ba l l a s t  tank. It consists of 

12 f t .  of 0.75 in. copper tubing sectioned i n t o  two f t .  lengths which 

a re  connected by a se r i e s  of elbows t o  form a path through which the 

o i l  flows w h i l e  i n  the M n c o  Bath. 
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5. Electr ical  System 

The e l ec t r i ca l  system is divided i n t o  two main systems: a )  

the thermal measuring c i r c u i t  and b) the calibration and c e l l  tes t ing 

c i r c u i t  . 
a )  Thermal Measuring Circuit 

The thermal measuring c i r cu i t  consists of a 25-junction 

t h e m p a & ,  

Amplifier fi835-B) and a recorder (L & N Speedomax Type "G"). 

of this c i r cu i t  is t o  measure and record any changes i n  t h e  temperature 

of  the o i l  flowing through t h e  calorimeter. 

constantan thermopile was constructed using &-in. lengths of No. 30 

wire which were coated with enamel and encased i n  f iberglass  insulation 

(L & N 930-55-1 Cu -Const.). 

t o  be time consuming. 

system which has been i n  operation f o r  three continual months. 

"spaghetti" was used t o  reinforce the wire and to protect it both 

mechanically and chemically. 

placed i n  12-in. lengths of 0.75 diameter acrylic pipe and l iquid Armstrong 

C-7 epoxy was injected between each wire t o  fix its position. 

elaborate device was necessary i n  order t o  know the exact position of t h e  

junction with reference to the calorimeter and t o  insure tha t  the 

junctions do not short  c i r c u i t  with themselves or the sides of the stain- 

less steel calorimeter. 

degree centrigrade per couple - this gives 10% ~ ~ ~ Q . o ~ ~ - f o r  25 couples. 

The L & N microvolt amplifier is capable of detecting 1 microvolt, thus 

enabling one t o  neasure a difference of 0.0010 degree between junctions. 

a microvolt amplifier (L & N Stabilized L C  Microvolt 

The function 

A 25-junction copper- 

The construction of this thermopile proved 

I n  figure 8 is presented a diagram of the f i n a l  

Teflon 

The entixw b d l e  of 25 junctions was 

The 

The emf. of t h e  junction is 41.3 microvolts per 
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b) 

The calibration and c e l l  testing c i r cu i t s  (Fig. 9) joint ly  

Calibration & Cell Testing Circuit  

share a constant current-constant voltage power supply (Kepco QCK 18-%), 

an automatic cycling device, and a mill ivolt  potentiometer (L' & N 

Q7553-5). 
current set t ing t o  0.1% of i t s  value. 

programmed through the automatic cycling device Figure 10. 

f a c i l i t a t e s  the charging of the c e l l  a t  constant current or  constant 

voltage and the discharging of  t h e  c e l l  a t  constant current or constant 

load. 

current a s  a function of t h e  voltage drop across a 0.1 ohm resis tor .  

this point the current proceeds through a switching panel t o  e i ther  the 

cal ibrat ion c i r c u i t  o r  the c e l l  testing circuit .  

by #16 polyvinyl chloride coated copper wires t o  a calibration heater 

which is constructed from manganin wire and held i n  position by the Lucite 

f ix ture  shown i n  Figure 2. 

constant resistance between l5OC and 35OC. 

temperature coefficient of resistance of 1.0 x 10-50C01. 

more #16 polyvinyl chloride insulated copper wires are  attached t o  the 

heater f o r  measuring the voltage drop across the heater. These voltage 

measuring leads are  then connected t o  the K-3 potentiometer. No. 16 

polyvinyl chloride coated copper leads a re  a lso used f o r  the current 

carrying and voltage measuring leads i n  this par t  of the circui t .  

voltage and amperage a re  recorded on a pa i r  of Honeywell Electronik #l7 

Recorders. 

re lay device which switches the direction of current going t o  an 

The Kepco power supply i s  capable of maintaining a constant 

The power supply i s  then remotely 

T h i s  device 

A K - 3  microvolt potentiometer is used t o  measure accurately the 

From 

The current i s  carried 

Manganin wire i s  used because of i t s  f a i r l y  

I n  t h i s  range it has a 

Finally two 

The 

The amperage recorder has attached t o  it a polarity switching 
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FIGURE 9. CALIBRATION AND C E U  TESTING CIRCUIT 
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ampere-hour integrator. The integrator  is attached t o  a pr in te r  which 

p r in t s  out  the m b e r  of ampere-hours passing through the c e l l  during 

each charge and discharge cycle. 

recorder is used t o  measure the voltage drop acrose a 6.8 ohm r e s i s to r  

which is placed between the Adhydrode and negative t a m i n a l  of the Ni-Cd 

cell. This voltage signal i s  a d i r ec t  indication of the oxygen pressure 

i n  the cel l .  Flnally, the automatic cycling devlco (Fig. 10) through 

a series of relays connects t o  e l ec t r i c  thers which control the length 

of time of the charge and discharge cycles. 

cycling device is a voltage meter relay which could be programmed t o  t r i p  

the c e l l  out o f  the c i r c u i t  when a cer tain voltage limit is reached. 

A Mosely Autograph P680 mil l ivo l t  

12 

Also, contained in the 



IV. EXPERMENTALPROCEWRE 

1. Calibration b e r i m e n t s  

I n  order t o  es tabl ish the a b i l i t y  of the  continuous f l o w  

calorimeter described i n  Section I11 t o  detect  the heat l iberated or  

absorbed by a cell ,  the instrument was calibrated i n  the  region of 0.10 

to 1.00 w a t t ,  which region corresponds to the  heat l ibera ted  by a Ni-Cd 

bat tery under typical  o rb i t a l  conditions. 

i n i t i a t e d  by placing a 6 AH Gulton Prismatic Battery i n  the  Lucite f ix ture  

(Figure 2) which a l so  contains t h e  manganin cal ibrat ion heater. 

The experimental sequence was 

The 

e n t i r e  fixturewasplaced i n  the calorimeter and allowed t o  equi l ibrate  

f o r  a t  l e a s t  16 hour8 before the first measurement is made. A one ohm 

resistor was placed across the tenuinal of the c e l l  external of t h e  

c a l o h e t e r .  Then, a constant current from the Kepco Power Supply w a s  

directed through the switching panel t o  the cal ibrat ion heater. T h i s  

current  was measured a s  the potent ia l  drop across a 0.1 ohm resistor by 

t he  K-3 potentiometer. The wattage (3J ) generated by the  cal ibrat ion 

heater was determined by 
2 W = I R  

er, by multiplying the current by the voltage drop across the heater as 

measured by the K-3 potentiometer. 

The difference i n  temperature between the inflowing and outflowing 

o i l  from the calorimeter produced 

by t he  25-junction thermopile. 

the cal ibrat ion heater was detected 

The output of the thermopile was fed i n t o  

the  D. C. microvolt amplifier which, i n  turn, was fed i n t o  0120 mv. 

range (L 4k N) Speedomax G recorder. 
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A p lo t  of watts VS. microvolts was obtained by performing 

a series of these experiments i n  the range of 0.0 t o  1.0 watt. 

of the variables which e f fec t  the magnitude of this signal are (a)  the 

position of the thermopile, (b) the r a t e  of flow of o i l ,  and (c)  the 

duration of time t h e  system has been seeking equilibrium. A detailed 

discussion of these variables appears i n  the nresultsn section of the 

report  . 
2. Cell Conditioninq 

Some 

The c e l l s  were received from the manufacturer with a short 

c i r c u i t  s t rap across the terminals. 

and the c e l l s  w e r e  conditioned a s  follows: 

The short  c i r c u i t  s t rap was removed 

C 
a )  charged a t  or 0.6 amp f o r  16 hours; 

b) discharged a t  or 3.0 amps u n t i l  a terminal z 
voltage of 1.0 was reached; 

short  circuited through a 1.0 ohm re s i s to r  f o r  

a minimum of 2 hours; 

d)  repeated step a ,  b, and c; 

e)  charge a t  

c )  

C or 0.6 amps f o r  16 hours. 

A t  this point the c e l l  is ready t o  s t a r t  t h e  cycling experiments with the 

first step being a discharge cycle. 

c e l l  conditioning served a s  a capacity check on the ce l l .  

considered acceptable i f  it maintained a capacity i n  excess of 7.0 A-H. 

3. 

The discharge s tep (b above) in the 

A c e l l  was 

CYclinn of Ni-Cd C e l l  i n  the Calorimeter 

A previously conditioned c e l l  was subjected t o  a series of 

experiments which varied i n  depth of discharge, percentage recharge and 

number of cycles. They were a s  follows: 

a) Experimental Series A: The c e l l  was discharged a t  3.0 

The c e l l  w a s  then charged a t  1-63 amps amps fo r  30 min. or 25% depth. 



. 

f o r  60 minutes or t o  l l O $  recharge. T h i s  was repeated f o r  79 cycles. 

b) Ikperimental Series B: The c e l l  was discharged a t  1.8 

amps for  30 minutes o r  t o  a 15% depth. 

0.99 amp f o r  62 min. or  t o  114% recharge. 

cycles. 

The c e l l  was then charged a t  

T h i s  was repeated f o r  74 

c )  Ekperimental Series C: The c e l l  was discharged a t  3.0 

The c e l l  was then charged a t  1.65 amps f o r  30 min. or t o  a 25% depth. 

amps f o r  62 min. or  114% recharge. This was repeated for  93 cycles. 

As a par t  of each experimental series a capacity check was run 

during t h e  l a s t  discharge cycle. 

voltage of 1.0 V. was observH. 

t h e  c e l l  terminals f o r  a t  l e a s t  2 hours. 

experimental series the c e l l  was recharged for 16 hours a t  

4. 

The c e l l  w a s  discharged u n t i l  a terminal 

Finally a 1 ohm res i s tor  was held across 

Then, before beginning the next 

or 0.6 amp. C m 
Determination of the Enthalpy Change (AH) of a Ni-Cd Cell 

It i s  possible t o  determine t h e  enthalpy change (AH) of the 

Ni-Cd cel l  a s  noted before. Since t h e  reaction i s  conducted i n  a 

hennatically sealed c e l l  then no PbV wprk It8 d-m .nd t f  a time i n  the 

reaction is chosen such tha t  no gas is being evolved then no VAP work i s  

performed. 

by defini t ion hE = AH or 

Under the above conditions of VAP and PAV equalling zero then 

bH = q-W 

where w represents only e lec t r i ca l  work and q the heat l iberated or 

absorbed. 

where V i s  the voltage across t h e  ce l l  and I is the current through it. 

The heat l iberated or absorbed during the c e l l  reaction is recorded a s  

microvolts through t h e  thermopile and these data a re  converted t o  watts 

through the calibration curves. 

The e l ec t r i ca l  work done on or by the c e l l  equals (I)(V) watts, 

Finally, the r a t e  of reaction is IFg1 



equiv/sec, where F is the Faraday i n  amp.-sec/equiv. Thus, during 

discharge 

-1 b~ = rq -WIF 
= K ca l  equiv 

4.18 x 10- I 

with the use of the above equations it i s  possible t o  calculate the 

enthalpy change (AH) for t h e  c e l l  reaction during e i ther  charging or 

discharging. These equations must be modified t o  include a VAP term if 

the calculations a re  performed during the evolution or reaction of 

oxygen. 

5.  Determination of Oxmen Pressure During Cell Cyclinq 

Using the work of Sizemorel'with the th i rd  electrode c e l l  it is 

possible t o  continually monitor the owgen pressure in the ce l l .  

Sieemore with the aid of a piezo-resistive pressure tranducer was able 

t o  correlate the mi l l ivo l t  signal of the Adhydrode across a 6.8 ohm 

res i s tor  with the oxygen-pressure i n  the cel l .  The results of this 

tes t ing appears i n  the following table  for the purpose of correlation. 



Voltage 
(m.) 

6.25 

12 . 50 
18.75 

25 00 

31.25 

37 50 

43.75 

50 . 00 
56.25 

62.50 

68.75 

75 00 

81.25 

87 50 

93.75 

TABLE mi 
Adhydrode Signal vs. Oxygen Pressure 

Oxygen Press. 
(P.S.I .A. ) 

0.63 

1.25 

1.75 

2.50 

3.13 

3.75 

4.75 

5.13 

6.13 

6.85 

7.50 

8.50 

9.00 

10.00 

11.00 

Voltage 
( m a )  

100 . 00 

106.25 

112 50 

118.75 

125 00 

131.25 

137 50 

143.75 

150 . 00 

156.25 

162 . 50 
168.75 

175.00 

181.25 

Oxygen Press. 
(P.s.I.A.) 

11 50 

12 . 50 

13.50 

14.60 

15 025 

16.25 

17 50 

18.75 

20 . 00 

21 020 

22 090 

24.75 

26.30 

28.70 

Conditions: Temperature 25OC and Resistance 6.8 Ohms. 
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V. RESULTS AND CONCLUSIONS 

1. Calibration Experiments 

Pr ior  t o  the calibration experiments a considerable e f f o r t  

was devoted t o  the physical design of the thermopile, calibration heater 

and the positioning of each. The major d i f f icu l ty  involved was the 

elimination of e l ec t r i ca l  short  c i r cu i t s  produced i n  the heater and the 

thermopile by the elements of each making contact wi th  themselves or  the 

walls of the calorimeter. 

Figures 2 and 6. 
i n  continual successful service f o r  several months. 

The f i n a l  versions of these devices appear i n  

Both t h e  thermopile and calibration heater have been 

With everything i n  

working order, there were three remaining variables to  be investigated 

during t h e  course of t h e  experiments: 

a )  

b) 

c)  t h e  length of time required fo r  equilibrium t o  

the position of the thermopile; 

the flow ra te  of the o i l ;  and 

be established. 

A system of reference distances was used t o  evaluate the positions 

of t h e  thermopile and heater a s  indicated i n  Figure 2. 
t ha t  "y," the distance of the heater from the top of the calorimeter did 

It was found 

not affect  t h e  signal from the thermopile. Distance "x," however, was 

very c r i t i c a l  and i f  it were more than several inches from the top of t h e  

calorimeter, the thermopile would s t a r t  sensing changes i n  the laboratory 

such a s  the cycling of the a i r  conditioner. Position "2" was the l e a s t  

c r i t i c a l  since t h i s  was the position of the cold junction of the thermopile 

which was i n  equilibrium with the en t i r e  system. The f i n a l  positions 

which were used fo r  a l l  measurements appearing i n  this report are: 

a )  x = l n  
b) 9 = 5p 
c) 2 = 2n 



1 

X " = Distance Of  Thermojunction From Top Of Calorimeter 

Y " = Distance Of H e a t e r  Down From Top Of  Calorimeter 
2 ' I  = Distance O f  Thermojunction From Bottom Of Calorimeter 

FIGURE 11 AEFEREblCE DIAGRAM FOR LOCATING POSITION OF 
THEWOPILE AND C A L I H U T I O N  HEATER 



The flow rate of the Marcol 70 O i l  through the calorimeter was v a r i e d  

by changing the length of stroke of the piston of the Milton Roy 

Constant Volume Metering Pup .  

r a t e ,  w h i l e  a 40$ stroke produces a 2000 cc/min. f l o w  rate.  

are the resu l t s  of these two flow ra tes ,  

slower f low ra te  of 1000 cc/min. produces almost double t h e  signal of 

the f a s t  flow ra te  of 2000 cc/min. A plo t  of the first four columns of 

Table I V  y ie lds  a s t ra ight  l i n e  demonstrating the l i nea r i ty  of response 

from 0.0 t o  1.0 watt. 

this l ine  does not intercept  the origin. 

and the lack of exact agreement between t h e  signal from day t o  day was 

an indication tha t  complete equilibrium had not yet been established. 

The system used t o  obtain the data in the f irst  four columns was allowed 

t o  equilibrate for 16 hours, whereas the s y s t e m  used t o  obtain data for 

columns 5 and 6 was allowed t o  equilibrate fo r  t h e  be t te r  par t  of a week 

before the data was collected. 

appears i n  Figure 12, 
thermopile before the experimental series 8-24-40 was begun is represented. 

The periodic fluctuations were the r e s u l t  of the external heating and 

cooling of the Aminco Constant Temperature Bath. 

constant and predictable and do not i n t e r f e re  with the interpretat ion 

of the results i n  any way. 

the experimental se r ies  8-24-40 when t h e  cal ibrat ion heat generated 0,4 

watts of energy is presented. 

f u l l  signal t o  be registered once the heater has been activated,  appears 

in Table V. 

A 20$ stroke produces a 1000 cc/min. flow 

I n  Table I V  

As would be expected, the 

However, these same graphs would also show t h a t  

The deviation from the or igin 

A graph of the data appearing i n  column 6 

I n  Figure u, the base l i n e  signal of the 

These fluctuatAons a re  

I n  Figure 2, the heat prof i le  curve fo r  

The response time, t h a t  is, the t i m e  f o r  the -. 



TABLE Y. 

CALIBRATION DATA 

Heater Signal Signal Signal 

(watts) (microvolt) (microvolt) (microvolt) 

O i l  

0.2 

0 -3  
0.4 

0.5 
0.6 

0.8 
0 -9  
1.0 

0.7 

Signal 

(microvolt) 

Signal 

(microvolt ) 

Signal 

(microvolt ) 

7-10-40 7- 11-20 7-14-40 7-15-20 8-25-40 8-24-40 

11 

22 

33 
43 
56 
67 
78 
90 

103 
113 

24 

48 
70 
90 

115 
140 
1 5  5 
175 
200 

220 

I 2  
24 

33 
44 
55 
66 
76 
88 
95 

10 5 

Experimental Number: 1st d i g i t  is the month 
2nd d i g i t  is the day 
3rd d i g i t  is the % stroke 

20% stroke = 1000 cc/min. 

40% stroke = 2000 cc/min. 

10 
20 

30 
40 
50 
60 
70 
80 
90 
100 

10 

1.9 
30 
40 
5 1  
59 
70 
81 
91 
100 

- 47 - 



WATTS 



I I I I I I 
1.1 I I I I 

! 1 ! a1 I 
- 

. 



' , I  

E 
9 
? 
0 



TABLE VI- RESPONSE TIM3 

Time 
(min. 1 

1.23 

2.30 

3-75 

Signal $ of Total 
(naicrovolts) 

20 pv 50% 

34 uv 85% 

40 uv lo(% 
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2. Cycling Fkp e riment s 

Table V I  gives t h e  oxygen pressure, change i n  enthalpy, and 

thermal data a t  specific times during the 1 8 t h  o rb i t  of each experimental 

series.  

Appendix which contain calculations of the above data a t  each five minute 

in te rva l  i n  t h e  cycle. The 1 8 t h  o rb i t  was chosen because this occurs 

approldmately 24 hours a f t e r  the ser ies  was in i t i a t ed ,  which t i m e  was 

suff ic ient  f o r  a steady s t a t e  condition t o  be established i n  the cel l .  

The steady s t a t e  condition was substantiated by the data fo r  the 5Oth, 

60th and 70th o rb i t s  appearing i n  the Appendix, which varied only s l igh t ly  

wi th  t ha t  of  t h e  1 8 t h  orbi t .  

T h i s  Table is a condensed form of the Tables appearing i n  t h e  

The thermal data were accumulated by converting the microvolt 

signal of the thermopile t o  watts by means of the cal ibrat ion curve 

presented i n  Figure 12. 

the mil l ivol t  signal of the Adhydrode t o  pressure (# .d. i .a . )  by means 

of the data appearing i n  Table 111. 

calculated a s  discussed above. 

made f o r  oprgen evolution o r  reaction, i .e .  no VAP term. 

only t ha t  calculation made during the minimum point of the owgen pressure 

can have any thermodynamic significance. 

35 minutes in to  the charge cycle when the pressure has dropped t o  2.0 

p.s.i.a. 

dynamic calculations since it is oxygen which was generated during the 

overcharge portion of the previous cycle and has not ye t  diffbsed to  a 

reaction site on the nickel or  Adhydrode electrode. 

c e l l  a t  this point a s  an unreactive species which is neither being 

generated o r  consumed. 

The oxygen pressure was obtained by converting 

The enthalpy changes (AH) were 

I n  these  calculations no provision was 

Therefore, 

T h i s  point occurs approximately 

T h i s  residual oxygen pressure does not enter i n t o  the thermo- 

It exists i n  the 

Further substantiation of this phenomena occur8 



C ond it ion 

Discharge 

Discharge 

Charge 

Charge 

Charge 

Discharge 

Discharge 

Charge 

Charge 

Charge 

D i  s charge 

Discharge 
Charge 
Charge 

Charge 

TABLE VII- Comparison of Thermal Enthalpy and Oxygen 
Pressure Data. 

Time Heat AH 02 Pressure 
( m i n . )  (watts) (kcal/equiv) (PSIA) 

5 
30 
5 
35 
60 

5 
30 
5 
35 
60 

5 
30 
5 
35 
60 

- .58 
-959 
-.38 
t .10 
- .23 

-.4Q 
- .32 
- .18 
-I. .07 
-.16 

-.74 
- .60 
-.38 
+ .10 
-.34 

-35 -58 
-33 70 

+33 -67 
+24.66 

+31.43 

-36.48 
-33 *38 
+26.25 
+33.68 
+29 * 93 

-36.58 

+25 .E 
+33.44 
+29.36 

-33.66 

15 03 
4.1 
3 -5 
1.5 
13.1 

Experimental Ser ies  A Orbit 18 
(25% Depth of D.C., 1106 Recharge) 

13.1 

3.2 
3 -0 
1.2 

10.4 

Experimental Ser ies  B Orbit 18 
(15% Depth of D.C., 114% Recharge) 

2 9  .o 
6.5 
6 .o 
2.1 
22 .o 

Experimental Ser ies  C Orbit 18 
(2570 Depth of D . C . ,  11470 Recharge) 
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during the c e l l  conditioning e-edments where, a f t e r  discharging a ce l l  

f o r  several hours t o  a terminal voltage of 1.0, an oxygen pressure of 

approximately 2 p.s.i.a. was detectable. It was i n  f ac t ,  present fo r  

several hours a f t e r  a one ohm r e s i s to r  had been placed across the c e l l  

terminals. 

the  Adhydrode signal would f ina l ly  indicate  zero oqygen pressure. 

a thermodynamic standpoint, the  charge process can be represented by 

I f  the c e l l  was l e f t  i n  t h i s  condition fo r  16 hours, then 

From 

the reaction: 

Using the l i t e r a t u r e  values f o r  the standard molar heats of formation of 

t h e  reactants and products, i . e .  -128.6, -133.3, 0.0, and -162.1 kcal 

mole-l, the  AH of the charging reaction i s  +66.3 kcal mole-’ or  +33.1 

kcal equiv .-le 

value of 33.1 kcal e q u i ~ . - ~  and the experimental obtained a t  the time 

intervals  of 30 and 35 minutes i n t o  the charge cycle which appears i n  

the  appendix of t h i s  report. Typical values obtained a re  +33.24, +33.32, 

+33.44, and +33.68 kcal equiv. l.Variations i n  a tenth of a kcal equiv.-l 

a r e  t o  be expected and are  within the accuracy of the experiment. The 

remaining enthalpy calculations though thermodynamically questionable, 

a r e  indicative of the changes i n  the energy content of systems related 

There is excellent agreement between the calculated 

- 

t o  t h e  evolution or  reaction of oxygen. 

The peak of the exothermic reaction occurs approldmately ten 

minutes i n t o  t h e  discharge cycle while t h e  height of the endothermic 

reaction occurs approldmately thir ty-f ive minutes i n t o  the charging 

reaction. 

Oxygen generation begins a s  soon as the  overcharging state is 

reached, i . e .  55 minutes i n t o  the charging cycle. The greatest  oxygen 



t '  

pressure recorded f o r  experirant.1 series C (24% Depth of D.C., 

114% Recharge) a t  62 aimtea i n t o  the charge cycle with a pressure i n  

excess of 29.0 p.s.i.a. 

I n  Table Vu: appears a comparison of t h e  IDo3dlllII t h e m 1  d a a  

and owgen pressure for each experimental series.  

t ha t  a greater the- effect  is produced by the depth of discharge used 

here than by the percentage recharge. 

depths of discharge the one with the highest recharge percentage will 

have the greatest  thermal effect. 

It may be noted 

Also, i n  the case of two similar 

A heat prof i le  curve obtained for the 20th cycle of experinrental 

series "Cn is presented i n  Figure u. This curve is typical i n  prof i le  

for a l l  of the cycUc experiments appearing i n  the appendices with only 

the magnitude of the thermal e f fec t  increasing or decreasing wi th  the 

corresponding change i n  the percentage recharge and depth of discharge. 

That i s ,  every battery experiences an exothermic reaction during discharge 

and overcharge, and an endothermic reaction during charging. 

I 
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TABLE VI11 

Comparison of Mamum Thermal Data 
and 0 Pressure 2 

Max. Heat Liberated Max. Heat Absorbed Max. 0 Press. 2 

Exp. b e r i e s A  -.66 Watts +.11 Xatts 16.1 p,s.i .a.  
(25% D.C. 110% Recharge) 

Exp. Series B -.44 Watts +.08 Watts 12.6 p.s . i .a .  
(15% D.C. 114% Recharge) 

Exp.  Series C -.77 Watts +.lo katts 729.0 p.s. i .a.  
(25% D.C. 114% Recharge) 
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V I .  F u m  WORX 

Following a discussion wi th  t h e  Technical Officer, Mr. Floyd 

Ford, i t  was decided t o  perform only two more types of experiments 

wi th  the six ampere-hour battery before going on t o  the twelve ampere- 

hour battery. These experiments are as follows: 

(1) Subject the battery t o  a t  l e a s t  70 cycles involving a 

40% depth of discharge and a 110% recharge rate. 

(2) Investigate the effect  of varying t h e  charge rate  
c c c c c  

( m, 8, 6, V, 2, i% c )  on the efficiency of t h e  battery using t h e  
I 

Adhydrode signal of 100 mv. to terminate each experiment. 

A s  before, a l l  data such as  oxygen pressure and the ra te  of heat 

generation w i l l  be recorded and the changes i n  enthalpy (AH) for  the 

system undergoing the various processes w i l l  be calculated. 



The authors a re  pleased t o  acknowledge t h e  following contribu- 

t ions t o  the project: 

1) Mr. Charles Soodak (American University) f o r  his assistance 

i n  t h e  design and assembly of the apparatus. 

2) Mr. Richard Meyers (American University) for his assistance 

i n  the calibration and t h e m 1  experiments. 

3) Mr. Smith T i l l e r  (Melpar, Inc., NASA Goddard Space Flight 

Center) f o r  his design and construction of the electronic hardware, 

especially the battery cycling device. 

4) Mr. Floyd Ford (NASA Goddard Space U h t  Center) f o r  h i s  

valuable suggestions and discussions. 
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EXPERIMENTAL SERIES "A" 

25Oc Orbit $17 July 28, 1966 

Orbital Conditions: 

1.) 30 mins. -d c a t  3.00 amps for 25% Depth of d c 

2.) 62 mins. 

Time q 
(mins.) (watts) 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

c a t  1.65 amps for 116 Recharge Rate 

E 
(volts) 

1.50 
1.34 
1.32 
1.30 
1.28 
1.27 
1.27 

1.32 
1.34 
1.35 
1.36 
1.37 
1.3s 
1.40 
1.41 
1.42 
1.44 
1.46 
1.50 
1.50 

W H H 
(watts) (watt-sec) (kcal/ 

4.50 
4.02 
3.96 
3.90 
3.84 
3 081 
3.81 

2.18 
2.21 
2.23 
2.24 
2.26 
2.28 
2.31 
2.33 
2.9 
2.38 

2 048 
2 0 4 8  

2.41 

-4.82 
-4.64 
-4.62 
-4 56 
-4 47 
-4.42 
-4.39 

+1.80 
+2.06 
+2 021 
+2.28 
+2.34 
+2.38 
+2.41 
+2.42 
+2.43 
+2 -43 
+2 39 
+2.25 
+2.18 

equiv ) 

-37.04 
-35.66 
-35.50 
-35.04 
-34.35 
-33 096 
-33.74 

+25.14 
+28.78 
+No87 
+31.85 
+PO69 
+33.24 
+33*67 
+33.80 
+33.95 
+33.95 
+33. 39 
+31.43 
+30.45 

Ad@- 
drode 
(mv) 

100 
130 
100 
78 
60 
50 
40 

35 
30 
22 
20 
16 
16 
14 
14 
15 
22 
50 
110 
130 

w g e n  
Press. 
(P.S.I.A. ) 

11.5 
16.1 

8.8 
6.5 
5.1 
4.1 

11.5 

3.5 
3.0 
2.2 
2.0 
1.6 
1.6 
1.4 
1.4 
1.5 
2.2 
5.1 
13.1 
16.1 



EXPEXIMENTAL SERIES "A* 

25Oc Orbit Y18 July 28, 1966 

Orbital Conditions: 

1.) 

2.) 

30 mins. d E a t  3.00 amps for 25% Depth of d c 
62 mins. e a t  1-65 amps for 110% Recharge Rate 

Time Q E 
(mins.) (watts) (volts)  

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

-.30 
-.58 
- 0 6 6  
0.65 - e 6 4  
-.60 
0.59 

0.38 - e14 
0-02 
+ -06 
+ -06 
+ e10 
+e10 
+ e11 +.w 
+ -06 - a 0 5  
-.26 
0.32 

1-50 
1.35 
1-32 
1.30 
1-28 
1.265 
1.265 

1.30 
1.33 
1.34 
1-36 
1.37 
1-95 
1.40 
1 a 4 0  
1.42 
1.44 
1 e 4 6  
1.48 
1.50 

W H H Adby- Oxygen 
(watts) (watt-sea) (kcal/ drodo Press. 

equiv) (mv) (P.S.I.A.) 

2.145 
2 .I95 
2.211 
2,244 
2.261 
2 .285 
2.310 
2 310 
2.343 
2 376 
2.409 
2.442 
2.475 

+1.765 
+2 . 055 
+2 .l9l 
+2 . 304 
+2 .321 
+2 385 

+2 -420 

+2.436 
+2 359 
+2.182 
+2.155 

+2.410 

+2.433 

+24.66 
+28.71 
+3O.61 
+32 . 33 
+32 .42 
+33< ,32 
+33-67 
+33.81 
+33 99 
+34.03 
+X*96 
+30.48 
+30 . 11 

3-5 
3.0 
2.5 
2.0 
1-5 
1-5 
1.5 
1-5 
1.5 
2.5 
5.1 
13.1 
14-9 
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EXPERIMENTAL SERIES "A" 

25Oc Orbit #19 July 28,1966 

Orbital Conditions: 

1.) 

2.) 

30 mins. D.C. at 3.00 amps for 25% Depth of D.C. 

62 mins. C, at 1.65 amps for 110% Recharge Rate 

Time Q E W H H Adhy- m g e n  
(mins.) (watts) (volts) (watts) (watt-see) (kcal/ drode Press. 

equiv) (mv) (P.S.I.A.) 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

0.32 
-,61 - .66 
9.65 
0.64 
0.60 - .60 

- *  36 - 014 
q.02 
+ e o 4  
+ a 0 8  
+.08 
+.lo 
+.lo 
+.lo 
+.04 
- 0 0 4  - .26 
0.32 

1.50 
1.35 
1.32 
1.30 
1.28 
1.27 
1.26 

1.32 
1.32 
1.34 
1.35 
1.36 
1.38 
1.40 
1.40 
1.42 
1.44 
1.46 
1.48 
1.50 

4.50 
4.05 
3.96 
3.90 
3.84 
3.81 
3.78 

2.178 
2.178 
2,211 
2 227 
2.244 
2.277 
2 310 
2 310 
2.343 
2 376 
2.409 
2.442 
2.475 

-4.82 
-4.66 
-4.62 
-4.55 
-4.48 
-4.41 
-4.38 

+1.818 
+2.038 

+2 267 
+2 . 324 
+2.410 
+2.410 
+2.443 
+2.416 
+2 . 369 
+2 . 182 

+2 .l9l 

+2 357 

+2.155 

-37.04 
-35.81 
-35.50 
-34.97 
-34.43 
-33.89 
-33.66 

+25.40 
+28.47 
+30 . 61 
+31.67 
+32.47 
+32.93 
+33*67 
+33.67 
+34.13 
+33.75 
+33.09 
+30 37 
+30.11 

100 
130 
100 
75 
60 
50 
40 

35 
30 
25 
20 
15 
15 
15 
15 
15 
25 
50 
110 
130 

11.5 
15.3 
11.5 
8.5 
6.5 
5.1 
4.1 

3.5 
3.0 
2.5 
2.0 
1.5 
1.5 
1.5 
1.5 
1.5 
2.5 
5.1 

16 -11 
13.1 
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EXpEKR@”AL SERIES “A” 

25OC O r b i t  #20 July 28, 1966 

Orbital Conditions: 

1.) 

2.) 

30 mins. D.C. at 3.00 amps for 2546 Depth of D.C. 

62 mins. C. a t  1.65 tmps for 116 Recharge Rate 

Tine Q 
(mins. 1 (watts) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

E W H H A*- 
(volts)  (watts) (wat tsec)  (kcal/ drode 

equiv) (mv) 

1.50 
1. 35 
1.32 
1.30 
1.28 
1.27 
1.26 

1.32 
1.34 
1.35 
1.36 
1.38 
1.39 
1.40 
1.40 
1 e42 
1.44 
1.46 
1.48 
1.50 

4.50 
4.05 
3.96 
3.90 
3.84 
3.81 
3.78 

2.178 
2.2ll 
2 . 227 
2.244 
2.277 
2 . 294 
2 . 310 

2.343 
2 376 
2.409 
2.442 
2.475 

2 310 

+ l o 8 0 8  
+2.081 

+2.294 
+2 . 187 

+2 337 
+2.394 
+2.400 
+2.420 
+2.433 
+2.436 
+2 . 369 
+2 0202 
+2 .145 

+25.26 
+29 . 07 
+30 55 
+32.05 
+32.65 
+33 044 
+33 53 
+33.01 
+33.99 
+34.03 
+33.09 
+30.76 
+29 97 

100 
128 
100 

75 
60 
50 
40 

35 
30 
22 
20 
15 
15 
15 
15 
15 
25 
50 

110 
130 

oxygen 
Press. 
(P .S.I .A. ) 

11.5 
15.7 
11.5 
8.5 
6.5 
5.1 
4.1 

3.5 
3.0 
2.2 
2.0 
1.5 
1.5 
1.5 
1.5 
1.5 
2.5 
5.1 

13.1 
16.1 



EXPERIMENTAL SERIES "A" 

25Oc Orbit #Zl July 28, 1966 

Orbital Conditions: 

1.) 

2.) 

30 mins. DOC. a t  3.00 amps for 25% Depth of DOC. 
62 mins. C. a t  1.65 amp& I for ll0s Recharge Rate 

. Bme 9 E W H H A*- Wgen 
(mins. ) (watts) (volts) (watts) (watt-sec) (kcol/ drode Press. 

-u~v) (m) (P.s.I.A.) 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

-032 1.50 4.50 -4.82 -37.04 100 n.5 
-.60 1.34 4.02 -4.62 -35.50 130 16.1 
-.66 1.32 3.96 -4.62 -35.50 100 U.5  
9.64 1.30 3.90 -4.54 -34.89 75 8.5 
-.62 1.28 3.84 -4.46 -34.28 60 6.5 
-.60 1.27 3.01 4 41 - 33 89 50 5.1 
-.58 1.27 3.01 -4.39 -33.74 40 4.1 

- 0 3 4  
0.10 
9.02 
+ .06 
+e08 
+e11 
+.lo 
+ 010 
+.lo 
+.02 
0.06 
- 0 3 2  
- 0 %  

1.32 
1.34 
1.34 
1.35 
1.37 
1.38 
1.40 
1.40 
1.42 
1.44 
1.46 
1.48 
1.50 

2 0178 
2 0211 
2 0211 
2 0228 
2.260 
2 0277 
2.310. 
2 . 310 
2.343 
2.376 
2 0409 
2 0442 
2 0475 

+1.838 
+2 . 111 
+2 . 191 
+2.200 
+2.340 
+2 387 
+2.410 
+2.410 
+2 . 443 
+2.396 
+2.349 
+2 . 122 
+2.115 

+25 . 68 
+30.61 

+%e69 
+33.34 
+33.67 
+33.67 
+34.13 
+33-47 
+32.82 
+29.64 
+29 55 

+29 . 49 
+31.96 

3.5 
3.0 
2.5 
2.0 
1.5 
1.5 
1.5 
1.5 
1.5 
2.5 
6.6 
13.1 
16.1 



EXPERPiENTAL SERIES "B" 

25OC Orbit #l8 Aug. 4, 1966 

Orbital Conditions: 

1.) 

2.) 

30 mins. d C .  a t  1.80 amps for 15% Depth of d c 

62 mins. C a t  0.9 amps for  Il4$ Recharge Rate 

Tine Q E W AH AH Adhy- 
(mins.) (watts) (volts) (watts) (watt-sec ) (kcal/ drode 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

0.22 - 0 4 0  
-039 
-0 3 8  
- *  36 
-.33 
- 0 3 2  

0.18 
-007 
+ e o 1  

+ e o 4  
+ e o 8  

+e07 
+.06 
+.06 
+ e 0 2  
+.04 - 016 - -22 

+.05 

1.47 
1.36 
1.34 
l e 3 2  
1.30 
1.28 
1.27 

1.32 
1.33 
1.34 
1.35 
1.36 
1.38 
1.39 
1.40 
1,42 
1.44 
1.45 
1.46 
1.46 

2.646 -2,866 
2.448 -2.848 
2.412 -2.802 
2.376 -2.656 
2.340 -2.600 

2.286 -2.606 
2,304 -2.534 

1.307 
1 317 
1 327 
1.337 
1.346 
1.366 
1 376 
1.386 
1.406 
1.426 
1.436 
1.445 
1.445 

+1.127 
+1.247 
+I 337 
+1 387 
+1 . 386 
+ l e 4 4 6  
+1.446 
+ l o 4 4 6  
+1.466 
+ l e 4 4 6  
+1 . 396 
+1.285 
+1.225 

equiv 1 

-36.71 
-36.48 
-35 89 
-34.02 
-33 31 
-32.46 
-33.38 

+26 -25 
+29 . 04 
+31e14 
+32.30 
+32 -28 
+33.68 
+33.& 
+33.@ 
+34.14 
+33.& 
+32 51 
+29 93 
+28 . 53 

(mv> 

85 
110 

90 
70 
55 
42 
32 

30 
23 
20 
18 
15 
12 
12 
14 
20 
29 
50 
90 
107 

%men 
Press. 

(P.S.I.A. ) 

9.6 
13.1 
10.4 
7.7 
6.0 
4.6 
3.2 

3.0 
2.3 
2.0 
1.8 
1.5 
1.2 
1.2 
1 e 4  
2.0 
2 09 
5.1 
10.4 
12.6 



EXPERIMENTAL SERIES "B" 

2 5 O c  Orbit #19 ~ u g .  4, 1966 

Orbital Conditions: 

1.) 30 mins. d e .  a t  1.80 amps f o r  15% Depth of d c 

2.) 62 mins. 

Time Q 
(mins.) (watts) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

- 022 - 0 4 0  - 0 4 0  
-.38 
-.9 
0.33 
0.32 

- -18 - 007 
+.oo 
+ e o 4  

+ e o 4  

+.08 
+ .06 
+.08 
+ .06 
+ 001 
+.04 
-.16 
-021 

c a t  0.99 amps for  134% Recharge Rate 

E w AH an Adhy- Oxygen 
(volts)  (watts) (watt-sec) (kca l /  drode Press. 

1 0 4 6  
1.36 
1.34 
1.31 
1.30 
1.28 
1.26 

1.32 
1.32 
1.34 
1.35 
1.36 
1.37 
1.38 
1.40 
1.42 
1.44 
1.45 
1.46 
1.46 

2.628 -2.048 
2.448 -2.848 
2.412 -2.812 
2.358 -2.738 
2,340 -2.680 
2.304 -2.634 
2.268 -2.gS8 

1 307 
1 307 
1.327 
1 337 
1.346 
1 356 
1 . 366 
1.386 
1.406 
1.426 
1.436 

1 .445 
1.445 

+1.127 
+lo237 
+1 327 
+1 347 
+1 . 386 
+1.436 
+1.426 
+1.466 
+1.466 
+1.436 
+1.396 
+1.285 
+le235 

equivj 

-36.48 
-36.48 
-36.02 
-35 07 
-34 33 
-33.74 
-33 -15 

+26 -25 
+28.81 
+30.91 
+31*37 

+33.44 
+32.28 

+34.14 
+34.14 
+33.44 

+29 093 
+28 . 76 

+33.21 

+32.51 

(mv) (P.S.I.A.) 

107 
110 
90 
70 
55 
42 
35 

30 
25 
20 
19 
15 
12 
12 
13 
20 
28 
49 
85 

100 

12.6 
13.1 
10.4 
7.7 
6.0 
4.6 
3.5 

3.0 
2*5 
2.0 
1.9 
1.5 
1.2 
1.2 
1.3 
2.0 
2 08 
5.0 
9.7 
11.5 

- 6 8 -  



mP)iXlXENTAL SERIES "BO 

25Oc Orbit #ZO Aug. 4, 1966 

Orbital Conditions: 

1.) 
2.) 

30 mins. t3.@( a t  1.80 amps for 15% Depth of d.6.- 
62 nins. c at 0.99 amps for 11q Recharge Rate 

Time 9 E w AH AH Adb- Qltygen 
(mins.) (watts) (volts)  ( w a t t s )  (watt-sec) (kcal/ drode Press. 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

9.21 - 039 - e 4 0  
-0 38 
0.34 
0.32 
9.34 

- e18 - e o 8  

+.oo 
+ e o 4  

+ e 0 5  
+ 0 0 8  
+.06 
+.06 
+.06 
+ e02 
+ .03 
-.16 - 021 

1 e 4 6  
1.36 
1.34 
1.32 
1.30 
1.28 
1.26 

1.32 
1.32 
1.34 
1.35 
1.36 
1.37 
1.38 
1.40 
1.42 
1 e 4 4  
1 e 4 5  
1.46 
1 e 4 6  

2.628 
2 0448 
2.412 
2.376 
2.340 
2 . 304 
2.268 

1.307 
1 307 
1.327 
1 337 
1.346 
1 356 
1 . 366 
1.386 
1.406 
1.426 
1.436 
1.445 
1.445 

-2 838 
-2.838 
-2 812 
-2 756 
-2.680 
-2 604 
-2 608 

+1.127 
+1 . 227 
+ l e 3 2 7  
+I* 377 
+1 396 
+1.436 
+1.426 
+ l e 4 4 6  
+lo462 
+ l e 4 4 6  
+1.406 
+1.285 
+1.235 

equiv 1 

-36.35 
-36.35 
-36.02 
-35 30 
-34.33 
-33.36 
-33.40 

+26.25 
+28.58 
+30e91 
+32*07 
+32.51 
+33.44 
+33*21 
+33.& 
+34.05 
+33.& 

+29 93 
+% -75 

(mv) (P.S.I.A.) 

100 11.5 
107 12.6 
88 10.0 
69 7.5 
55 6.0 
42 4.6 
32 3.2 

+28.76 102 11.8 



EXPEHMZNTAL SERIES "El" 

25 '~  . _  . Orbit #21 Aug. 4, 1966 

O r b i t a l  Conditions: 

1.) 
2.) 

30 mins. $ .C ,  a t  1.80 amps for 15% Depth of d.C- 
62 mins. B a t  0.99 amps for 114% Recharge Rate 

T i m e  Q E W AH AH Adhy- m g e n  
(Plins.) (watts) (vol ts)  ( w a t t s )  (watLsec) (kcal/  drode Press. 

equiv) (mv) (P.S.I.A.) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

2.628 
2 0 4 4 8  
2 a412 
2 358 
2.340 
2 . 304 
2.286 

1 307 
1 307 
1 327 
1 337 
1.346 
1 356 
1.376 
1.386 
1.406 
1.426 
1.436 

1 a 4 4 5  
1.445 

-2.838 
-2.828 
-2 . 842 
-2 . 728 
-2.710 
-2.624 
-2 . 606 

a1 . 097 
+1 a 247 
+ lo97  
+la377 
+1.406 
+I. a 4 0 6  
+la456 
+la446 
+la476 
+ l m M  

+1.376 
+1.285 
+la195 

-36.35 102 11.8 
-36.22 110 13.1 
-36.41 90 10.4 
-34.95 70 7.7 
-34.72 52 5.4 
-33.61 42 4.6 
-33.38 32 3.2 

+25.55 
+29 . 04 
+31*37 

+32.75 
+32.75 
+33.91 
+33.67 
+?+a38 

+33.67 
+32.05 
+29*93 
+27.83 

+32.07 

3.0 
2.5 
2.0 
1 a 8  
1.5 
1.5 
1.5 
1.5 
1.9 
1.9 
5.1 

10.4 
12.3 



EXI'EIU"AL SERIES "B" 

Orbit 022 Aug. 4, 1966 _ _  - 2 5 O C  

Orbital Conditions 

1.) 
2.) 

30 mins. d c a t  1.80 amps for 15% Depth of d c 
62 mins. c a t  0.99 k p s  for 3146 Rechbrge Rate 

i S h e  Q E W AH AH Adhy- Oxygen 
( d n s . )  (watts) (volts)  (watts) (watt-sec) (kcal/ drode Press. 

equiv) (mv) (P.S.I.A.) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

- 020 
-.06 
+.oo 
+.03 
+.O6 
+.05 
+.08 
+.08 
+.O6 
+.04 
+ .06 
0.15; 
0.23 

- 71 - 



EIPERI)IENTAL SERIES "B" 

25OC Orbit #30 

Orbital Cod i t ions  

1.) 
2.) 

30 mins. d c a t  1.80 amps for 15% Depth of d c 
52 mins. c a t  0.99 amps for U4-5 Recharge Rate 

Aug. 4, 1966 

T i m e  Q E W An an Adhy- w g e n  
(mins. ) ( w a t t s )  (vol ts)  (watts) (watt-sec) (kcal/ drode Press. 

equiv) (mv) (P.S.I.A.) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

0.22 
- 0  38 
-.42 
-036 
- 0 3 4  
- 0 3 4  
- 0  30 

- m 1 8  - b o 8  

+.02 
+ e o 4  
+.06 
+.09 
+ b o 8  
+ .10 
+ e07 
+ b o 4  

9.14 - 020 

+.03 

1.47 2.646 
1.35 2.430 
1.9 2.412 
1.31 2.358 

1.28 2.304 
1.26 2.268 

1.30 2.340 

1.32 1.307 
1.32 1.307 
1.3 1.327 
1.35 1.337 
1.36 1.346 
1.37 1.356 
1.38 1.366 
1.40 1.386 
1.42 1.406 
1.44 1.426 
1.45 1.436 
1.46 1.445 
1.46 1.445 

-2.866 -36.71 
-2.810 -36.00 
-2.032 -36.28 
-2.718 -34.82 
-2.680 -34.33 
-2.644 -33.87 
-2.568 -32.90 

+1.127 
+1.227 
+ l o 3 7  
+1 377 
+1.406 
+lo446 
+1.446 
+1.486 
+1.476 
+1.466 
+1.406 
+1 305 
+1 . 245 

80 
108 
85 
65 
52 
40 
32 

30 
25 
20 
15 
15 
15 
15 
15 
20 
20 
50 
90 

102 

8 09 
12.8 
9.6 
7.1 
5.3 
4.1 
3.2 

3.0 
2.5 
2.0 
1.5 
1.5 
1.5 
1.5 
1.5 
2.0 
2.8 
5.1 

10.4 
11.8 

- 72 - 



EXPERMENTAL S-S "P 

25Oc ~ orb i t#M Aug. 4, 1966 

Orbital Conditions: 

1.) 
2.) 

30 mins. d c at 180 amps for 15% Depth of d c 
62 mins. c at 0.99 amps for ll45 Recharge Rate 

Time 9 E W AH AH 
(mins. ) (watts) (volts)  (watts) (watt-sec) (kcel/ 

q u i d  

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 

25 
30 
35 
40 
45 
50 
55 
60 
62 

-e22 

- .41 -.% 

-.% 
- 0 3 4  
-032 - . 32 

4 6  
-.06 
+ ,oo 
+ e o 4  

+.07 
+.06 
+.w 
+ e o 8  
+.06 
+ eo1 
+ e 0 3  
4 6  
9.22 

1.42 2.556 

1.34 2.412 
1.36 2.446 

1.31 2.338 
1.30 2.340 
1.28 2.304 
1.26 2.268 

1.32 1.307 
1.33 1.317 
1.P 1.327 
1.36 1.346 
1.36 1.346 
1.38 1.366 

1.40 1.386 
1.42 1.406 
1.44 1.426 
1.45 1.436 
1.46 1.445 
1.46 1.445 

1.39 1.376 

-2.776 -35.56 
-2.828 -36.23 
-2.822 -36.15 

-2.680 -34.33 
-2.738 -35.07 

-2.621) -33.61 
-2.588 -33.15 

+1.14? 
+lo257 
+le 327 
+lo386 
+1.416 
+1.426 
+1,466 
+1.466 
+1.466 
+1.436 
+1.406 
+1.285 
+1.225 

+26.71 
+29.28 

+32.28 
+Joe91 

+PO98 
+33.21 
+34.14 
+34.14 
+34.14 
+33.44 
+32 -75 
+29 093 
+28 . 53 

Adhy- 
drode 
(d 

80 
108 
85 
65 
50 
40 
32 

30 
25 
20 
15 
15 
15 
15 
15 
20 
30 
50 
90 
102 

owgen 
Press. 
(P.S.I.A. ) 

8.9 

9.6 
7 *1 
5.1 
4.1 
3.2 

12.8 

3.0 
2.5 
2.0 

1.5 
1.5 
1.5 
1.5 
2.0 
3 .o 
5 -1 
10.4 
11.8 

1.5 

- 7 3 - ,  



mE3U"TAL SERIES "B" 

25OC Orbit #5O 

Orbital Conditions: 

Auh. 4, 1966 

1.) 
2.) 

30 mins. d c a t  1.80 amps for 15% Depth of d c 

62 mins. c at 0.99 amps for 114% Recharge kate 

E W AH AH Adhy- Oxygen 
(mins.) (watts) (volts)  (watts) (wattsec)  (kcal/ drode Press. 
Time Q 

equiv) (m) (P.S.1.A. 1 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

- .25 - 0 4 0  
-.42 - 041 
- 0 3 6  
- 0 3 6  
0.32 

- 020 
0.08 
+.oo 
+ .03 
+.Ofi  
+.06 
+.07 
+.04 
+.06 
+moo 
+ a 0 4  
0.20 
.24 

-2.806 -35.94 80 8 .9 
-2.848 -36.48 108 12.8 
-2.832 -36.28 88 10.0 
-2.768 -35.46 69 7.5 
-2.682 -34.36 51 5.2 
-2.664 -34.13 40 4.1 
-2,588 -33.15 32 3.2 

+la107 
+la227 
+ l a 3 2 7  
+1 . 367 
+1.396 
+1.416 
+1.436 
+1.426 
+1.466 
+1.426 
+1. 396 
+1,245 
+ l e 2 0 5  

+25 . 78 
+28 . 58 
+30.91 
+31.84 
+32.51 
+32 098 
+33.4J+ 
+33.21 
+34.14 
+33.21 
+32.51 
+29 00 
+28 . 06 

30 
25 
20 
15 
15 
15 
15 
15 
20 
20 
48 
85 
101 

3.0 
2.5 
2.0 
1.5 
1.5 
1.5 
1.5 
1.5 
2 .o 
2 08 
4 09 
9.7 
11.6 

- 74 - 



UP-AL SERIES "B" 

DISCHARGE 

-.26 1.42 
-040 j 1.36 

2.556 
2.448 

80 8.9 
108 12.8 
87 10.0 
68 7.5 
52 5 .4 
40 4.1 
32 3.2 

30 3.0 
25 2.5 
20 2 00 
15 1.5 
15 1.5 
15 1.5 
15 1.5 
15 1.5 
18 1.8 
25 2.5 
48 4.9 
85 9.7 

102 11.6 

0 
5 

10 
15 
20 
25 
30 

- 042 1.34 2.412 

CHARGE 

+lo107 
+le257 
+ 1 o W  

' +1.386 
+1.406 

, +1.436 
+1.456 
+ l o 4 4 6  
+lo466 
+1.426 
+lo396 
+1.265 
+lo205 

0.20 1.32 
- e o 6  1.33 
+ o o o  I 1034 
+ e o 4  ' 1.36 
+ e o 6  1.36 

5 
10 
15 
20 
25 
30 
35 
40 
45 

, 50 
55 

: 60 
, + e o 4  - e 1 8  

-.24 ' 6 2  

I 

i 

! - 75 - 1 1 

I I i i ! 



EXPEFUMENTAL SERIES "B" 

. .. . -. - __ - . .. 25Oc O r b i t  #70 . - -. . . . . -. . . .. ___ .. _ _  -_ ._ . . .- .. ._.._-.. -- . .... . - -- _._--_____..____.__ 

Time , q 
(mins.) (watts) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40. 
45 
50 
55 
60 

I 6 2  

a 0.22 - 040 - 042 
0.38 
- 0 %  

-033 
0.33 

0.18 
t 0.08 

+ e o 0  
+.03 
+.06 
+.06 
+.06 
+.06 
+.05 

, +.02 
, +.04 
1 -.16 
! -.24 

! L. . I--_ 

i - _-- .- ..-I.-- _ - "  

c a t  1.80 aarps fop 15% De&h of d c 

a t  0.99 L p s  for il4$ Rech/prgs Rate 

1 

I 
I 
I 

E ' w  AH 
(vol ts  ) j (watts ( w a t t -  sec 

! 

, 1.42 2.556 
i 1.36 2.440 

1.30 2.340 

1.34 2.412 
1.31 ' 2 . 3 9  

1.28 2.304 
1.26 .2.268 

! 

-2 776 
-2.848 
-2.832 

la32 
1.32 
1.34 
1.35 
1.36 
1.37 
1.38 
1.40 

I 

I 

! 

1 

- 76 - 
I 

80 
105 

82 
62 
50 
40 
32 

29 
22 
20 
15 
15 
12 
12 
15 
18 
25 
45 
80 
95 

. .. 
1 -  - 

I 

w e e n  
Press. 
(P . S .I .A .,) 

8.9 
12.3 
9.0 
6.8 
5.1 
4.1 
3.2 

2 89 
2 02 
2.0 
1.5 
1.5 
1.2 
1.2 
1.5 
1 .8 
2.5 
4.8 
8 .9 

11 01 



DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 

B 20 
25 
30 

i 35 
. 4 O  

45 
' 50 

55 
60 

{ 6 2  

i 
I 

1 

! 1.48 
! i 1.34 
I 1.31 

1.29 

1.26 

1.28 
1.26 

1.32 

Aug. 8, 1966 
. .. - 

O r b i t  #18 
____-__.____ . . .. __ ~. . ... . . .. - - . -- 

! --T---c_-_-~-. .-. -1 1 -- _ _  ___ . .. . I .. . . . . - . i ... . ... - - 

3 amps f 
rnps for 

1.34 2.211 

1.36 2.244 
1.35 2.228 

1.38 2.277 
1.39 2.294 

1.42 ! 2.343 
1.45 2.393 
1.46 , 2.409 
1.48 2.442 

1.40 I 2.310 

1.48 i 2.442 
I 

- 77 - i 
i i 

-37.81 170 
-36.58 . 195 
-36.04 130 

-34.74 95 
-33.81 75 
-33.66 60 

-35.27 . 120 

+25.12 55 
+28 . 43 
+30 33 

'+31.02 
'+32.33 
+33.07 
,+33.44 
;+33.39 
/+33.71 
' +33.71 

/+27.69 

3 +32.26 
I+29*36 

I 

i 

i 

I 

I 

I 

i 

45 
35 
30 
25 
22 
21 
21 

27 
40 
80 

160 
195 

I 

w e e n  
Press. 
(P.s.I.A. ) 

25.0 
29.0 
20.0 
15.0 
11.2 
8.5 
4.5 

6.0 
4.8 
3.5 
3.0 
2.5 
2.2 
2.1 
2.1 

2.7 
4.1 
8.9 
22.0 

> 29.0 

I 



EXPEXMENTAL SERIES "C" 

3.00 amis for 254 Depth of doc. 
amps Ifor 114$ IRecharge ;Rate 

i ! I I 

2.)j 62 lain 
i 1 

T i m e  1 q 
(mins.) (watts) 

DISCOARGE 

0 
5 

10 
15 
20 
25 
30 

C*E 

5 
10 
15 
20 
25 

, 3 0  
35 
40 
45 

~ 50 
55 
60 

1 I 62 
1 

, 

I 

1 

I 

E ' W  an AH ' Adhy- 
drode (vol ts)  ' (watts) (watt-sed) (kcal/ 

I equiv) ' (mv) ! I 

i 

' 1.48 , 4.44 -4.90 -37.66 195 
1.35 4.05 -4.80 -36.89 i 192 
1.31 3.93 -4.69 ~ -36.04 I 150 
1.30 3.90 Ae62 -35.50 ~ 117 
1.28 
1.27 
1.26 

1.32 

3.84 -4.50 -34.9 I 92 
3.81 -4.43 -34.04 75 
3.78 -4.38 ' -33.66 60 

2.178 +1.818 , +25.4O 53 

35 
1.35 2.228 +2.238 +31.26 30 

i 1.36 , 2.244 +2.314 +Yo33 27 i 1.38 2.277 +2*357, +%e93 22 
1.39 2.294 +2.394 +33.44 21 

, 1*34 , 2.211 +2 .lgl +30.61 

i le& 
; 1.42 
1 1.45 
1 1.46 
j l e 4 8  
{ 1.48 

21 2.310 +2.410 , +33.67 
2.343 +2.423 +33.05 28 
2 393 
2 0409 
2 e442 
2 0442 

! 

I 

i 
I i 

! 
1 

- 70 - 

I 

i 
i 

Oprgen 
P r e s s .  

(P.S.I .A.)  

> 29.0 
> 29.0 

20 00 
14.5 
10.8 
8.5 
6.5 

5.6 
4.7 
3.5 
3.0 
2.7 
2.2 
2.1 
2 0 1  

2.8 
4.6 
9.6 
22.0 

> 29.0 



I 9 T b p J  Co&tions;-. 1 -7- .--- -; ! I---- --1- - -  
# I I 1 

lo), 30 mins doc. at,3.00 amp for 25(%:Depth of doc. 
2.) 62 mins C. a t  l i65 amps o r  U4$ kcharge  Rate 

I I i I 1 
I i 

W AH AH Adhy- Time Q i E  
(mins.) (watts) f (vol ts)  (watts) (watt-seb) (kcal/ drode 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

- 0 4 8  
0.75 
.c .76 
0.72 
-.69 
-.63 
-.62 

- 0  36 
4 6  
0.02 
+.03 
+e07 
+.08 

' +.lo 
+.08 
+.08 
+ 002 - 012 
-033 - 0 4 6  

I 
I 

I 

f quid 
! 

i 

: 1.48 4.44 -4 092 ' 1.9 4.02 -4.77 
1 1.31 3.93 -4.69 
; 1.29 3.87 -4.59 

1.28 3.84 -4.53 

1.26 3.78 -4.40 
1 2 6  3.78 -4 41 

-37.81 
-36.66 
-36.04 
-35.27 
-34.81 
-33.89 
-33.81 

1.32 2.178 +1.818 +25.40 

1.9 , 2.211 +2.191 +30.61 
1.32 2.178 +2 . 018 +28 .l9 

1.35 2.228 +2.258 +31.9 
1,s ; 2.244 +2m314 +32*33 
1.38 2.277 +2*357 +Po93 
1.39 2,294 +2m394 +33*44 
1.40 2.310 +2.390 +33*39 
1.42 . 2.343 +2.423 +33.85 
1.45 
1.46 
1.48 
1.48 

1 I 

(nv) 

170 
195 
150 
120 
92 
75 
60 

55 
45 
35 
30 
25 
25 
22 
22 
28 
42 
80 
160 
200 

_ _  . . . . . 

w g e n  
Press. 
(P .S.I .A. ) 

25.0 
7 29.0 

20.0 
15.0 
10.9 
8.5 
6.5 

6.0 
4.8 
3.5 
3.0 
2.5 
2.5 
2 02 
2.2 
2.8 
4.6 
8.9 

22.0 
7 29.0 



ExPERII4ENTAL SERIES "C" 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

C U K E  

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

C. at 3iOO amps + 25% gPth of dbc. 
at 1.6 amps fo? 114% Re harge Rake P i i 4 

E i  W AH An Adhy- 
(volts) (watts) (watt-see) (kcal/ drode 

1 equiv) (mv) 

I 

1.48 4.44 
1-34 , 4.02 
1.31 3.93 

-37 . 66 170 
-36.66 195 

1-28 3.84 -4.50 -34058 92 

-35 097 ' 150 
1.29 3.87 -4.59 -35.27 118 

3.78 -4.42 -33.97 75 
60 

1.26 
1.26 ' 3.78 -4.38 -33.66 

1.32 2.178 
1.32 
1-34 
1-35 
1.36 
1-38 
1.39 
1.40 
1.42 

2 . 178 
2.211 
2 . 228 
2.244 
2 0277 
2 294 
2 . 310 
2.343 

1-44 3 2.376 
1.46 i 2.409 

! 

i 

! 

I 

I 
! 

i 

I 

- 80 - 

w g e n  
Press. 
(P . S.1 .A. ) 

25.0 
> 29.0 
20.0 
14.5 
10.9 
8.5 
6.5 

53 - 5-6 
43 4.7 
37 3.7 
30 3.0 
28 2.8 
25 2.5 
22 2.2 
22 2.2 
29 2.9 
42 4.6 
85 9.6 
160 22.0 
198 > 29.0 



EXPERIMENTAL SERIES *C* 

.e. a t  3600 amps for 25% Depth of d,c. . a t  1.65 amps for 114% Retharge Rate 
6 

1 Time 9 ' E  W AH AH Adhy- 
(mins.) (watts) : (volts)  ( w a t t s )  (watt-see) (kcal/ drode 

I 9quiv) (lav) 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

1 6 2  

- -48 
0.74 
-.76 
0.70 
0.68 
0.64 
-.60 

0.37 - .16 - 0 0 6  
+e02 
+ 007 
+.08 
+.07 

, +e09 
+ .04 
+.03 
0 e 1 4  
0.34 - 046 

1.32 
1.33 
1.34 j 

1.36 
1.36 
1.3s 
1.39 
1.40 

1 1.42 
1*44 

' 1*46 
1.443 

1 1.48 

I 

- 81 - 

170 
192 
150 
120 
95 
75 
60 

55 
45 
38 
31 
29 
25 
22 
22 
28 
42 
80 
160 
198 

wl3en 
Press . 
(P . S .I .A . ) 

25.0 
> 29.0 

20.0 
15.0 
11.2 
8.5 
4.5 

6.0 
4.8 
3*8 
3.1 
2.9 
2.5 
2.2 
2.2 
2.8 
4.6 
8.9 

22.0 
> 29.0 



EXPERIMENTAL SERIES "C" 

! 

Time Q ' E  W AH AH Adhy- Wgen 
(mins.;) (watts) (volts)  (watts) ' (va t t seq)  (kcal/ drode Press. 

I d equiv) , (mv) (P.s.I.A.) 
DISC URGE 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 

4 50 
55 
60 

' 62 

, 0.48 , 1.4 4.47 
0.74 1.35 4.05 
0.75 I 1.31 1 3.93 
0.73 , 1.30 3.90 - .66 1.28 3.84 -.a , 1.27 3.81 - a60 1.26 I 3.78 

- a 3 6  1.32 2.178 
' 0.14 1.33 2 195 

-.03 1.34 2.2l.l 
4.01 ' 1.35 2,228 
+e07 1.36 2.244 
+e09 1.9 2 277 
+.lo , 1.39 2.294 
+.08 
+.08 
+.01 

' 0.12 
i 0.34 - *45 

1.40 1 2.310 
1.42 - 2.343 
ls45 I 2,393 
1.46 2,409 
1 a 4 8  2.442 
1.48 i 2.442 

i I 
I 

I 

1 
1 

I I 

-4.95 
-4.79 
-4.68 , 

-4.63 
-4. 50 
-4.45 
-4.38 

+1.818 

+2 . 181 

+2 . 314 

+2 055 

+2.238 

+2 . 367 
+2 . 394 

+2.403 
+2.289 

+2 . 390 
+2 . 423 

+2'.102 
, +1s992 

-38.04 
-36.81 
-35.97 ' 

-35 58 
-34.58 
-34.20 
-33.66 

+25.40 
+28 . 71 
+30.47 
+31.26 
+32 33 
+33.07 
+33.44 
+33.39 
+33.85 
+33.57 
+31*97 
+29 . 36 
+27.83 

165 
192 
150 
118 
92 
?5 
60 

53 
43 
37 
30 
28 
25 
22 
22 
28 
40 
85 

160 
200 

23.5 
29.0 
20.0 
14.5 
10.9 
8.5 
6.5 

5.6 
4.7 
3.7 
3.0 
2.8 
2.5 
2 02 
2.2 
2.8 
4.1 

22.0 
> 29.0 

9.6 



i $ 

O'bipl c o n ! a ! ! o ! s  ..-_- --I _ j _ _  - - -+ . -a- _ _  
1 I 1 

I fi 1.)' 30 mind. d.c. ad 3.00 amis for 25 Depth of doc. 
2.)' 62 mind. C. at d.65 amps'for 114$/Recharge Rate 

Time  q ; E  W AH ' 8H Adb- 
(nins.) (watts) 1 (volts) (watts) (wattse$)(kcal/ drode 

~ 

1 
, , 

1 

' equiv) (mv) 

w g e n  
Press. 

(P  .S.I .A . ) 

25.0 

20.5 
,> 29.0 

14.8 
11.2 
8.5 
6.8 

5.6 
4.7 
3.7 
3.0 
2.8 
2.5 
2.2 

DISCHARGE 

0 
5 
10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
62 

-4 . 92 -37.81 170 
-4.77 -36.66, 195 
-4.66 -35.81 155 
04-54 -34.89 120 
-4.40 -34.43 95 
-4.40 , -33.81 75 
-4.34 -33.35 62 

-067 1.27 

9.59 1.25 
-.62 1.26 

3.81 
3.78 
3.75 

0.37 1.31 2.162 

+2.400 
+2 -433 
+a416 
+2*309 
+2.142 
+1.982 

+33.52 22 
+33.99 28 
+33.75 40 
+32.26 80 
+29.92 160 
+27.69' 195 

2.2 
2 08 
4.1 
8.9 
22.0 

> 29.0 

! 

- 03 - 
1 

! 
I 

I 



EXPERIHENTAL SERIES "C" 

. . .. - . .. . . . . . . . 

Orbi$al CondifAons: i I 

I- --- - . --I- - -- r -  
I 

1.) ,30 mins.'d.c. a t  ,00 amps for 25% bepth of doc. 
I 2. )  '62 mins.ic. at lox ! 5 amps &r ll* &charge Ezlate 

I i ! 

$ 

Time 9 E ' w  AH An Adhy- 
(mins.) (watts) (volts)  (watts) !(watt-sed) (kcal/ drode 

I equiv) (4 
I 

DISCHARGE 

CHARGE 

$:% 
1.31 
1.29 
1.28 
1.26 
1.25 

1.32 
1-32 
1.9 
1.35 
1.38 
1.38 
1.39 
1.40 
1.42 
1.45 
1.46 
11.48 
1.48 

-37.g3 165 k% -4. -4*f8 , -35. 1 195 
-4.61 -35.42 150 , 3.93 

3.87 -4.51 -34.66 115 
3.84 -4.43 -34.04 90 
3.78 -4.9 -33 35 75 
3.75 -4.28 -32.89 60 

2 . 178 
2 178 
2.211 
2.228 
2.277 

' 2.277 
2.294 

: 2.310 
12.343 
, 2.393 
i 2.409 

2.442 
I I 2.442 

53 
43 
35 
30 
28 
25 
22 
22 
28 
40 
82 
160 
200 

w e e n  
Press. 

(PmS.1.A.) 

23.5 
29.0 
20.0 
13.9 
10.4 
8.5 
6.5 

5.6 
4.7 
3.5 
3.0 
2 08 
2.5 
2.2 
2.2 
2.8 
4.1 
9.1 
22.0 

> 29.0 

, - 8 4 -  
I 



EXPERIHENTAL SERIES "C" 

I Orbit 1)60 Aug. 8, 1966 
- - - . - - -. - I--.- - - _ . -  - I.- - - -- . -  

I 
Orbital Cnndikions: I -  - . _  

1.) 30 mlns. 4.c. a t  3*00 amps tor 25% Depth of d.c. 
2.)  62 mins. a. a t  1.65 amps fof U4$ Bebharge Rate 

Time 9 E ' W  eH AH Adhy- Oxygen 
(mins. 1 (watts) (vol ts)  (watts) (watt-see) (kcal/ drode Press. 

quid (4 (P.s.I.A.) 

D I S W E  

0 
5 

10 
u 
20 
25 
30 

CHARGE 

-40 1.49 4.47 - 074 1.35 4.05 
-076 ~ 1.3 3.96 
,074 1.30 3.90 - 0 6 6  1.28 3.84 - 0 6 4  1.26 3.78 
-.60 1.26 3 078 

5 0.36 
10 - .16 
15 - 002 
20 +.04 
25 +e05 
30 +.09 
35 + 010 
40 +.lo 

' 45 + e 0 9  
50 +.01 
55 -08 
60 -032 
62 - 0 4 6  

1.32 
1.3 
1.34 
1.35 
1.36 
1.38 
1.39 
1.40 
1.42 

' 1.45 

1.48 
1.48 

I 1.46 

2 . 178 
2.178 
2,211 
2.228 
2.244 
2.277 
2.294 
2 310 
2.343 
2.393 

! 2.409 
2 b442 
2 0442 

1 

-4 097 
-4.79 
-4.72 
-4.64 
-4.50 
-4.42 
-4.38 

+1.818 
+2.018 
+2 . 191 
+2 268 
+2.294 
+2 . 367 
+2 . 394 
+2.410 
+2.433 
+2.403 
+2 329 
+2 0122 
+1.982 

-38.19, 170 25.0 
-36 -81 195 > 29.0 
-36.27 152 20.2 
-35.66 120 14.8 
-34.9 93 11.0 
-33.96 75 8.5 
-33.66 60 6.5 

+25.40 
+28.19 
+30.61 
+31.68 
+32.05 
+33.07 
+33.44 
+33*67 
+33.99 
+33.57, 
+ % e 5 4  

+29 . 64 
+27.69 

53 5.6 
43 4.7 
37 3.7 
30 3.0 
28 2.8 
25 2.5 
22 2.2 
22 2.2 
26 2.6 
40 4.1 
80 8.9 

160 22.0 
198 s 29.0 

i 

j 



Time I Q ' E / W  I AH AH Adhy- Oqvgen 
Press. (mins .) (watts! (volts)  (watts) /(watt-aeQ) (kcal/  drode 

I 1 equiv) (mv) (P.s.I.A. ) i I 
I I 

DISCHARGE 

0 
5 

10 
15 
20 
25 
30 

CHARGE 

5 
10 
15 
20 
25 
30 
35 

1 4 0  
45 
50 
55 
60 
62 

, 0.36 I 1.32 
' 0.18 le32 
' 0.02 ' 1.34 
' + a 0 2  1.35 
, +.08 1 1.36 
' +.08 1.38 

+ a 1 0  1.39 

2 0178 
2 a178 
2 0211 
2.228 
2.244 
2,277 
2 . 294 

' +.m I 1.40 2.310 

+1 . 918 
+1.998 
+2 . l9l 
+2 0248 
+2 . 324 
+2 . 357 
+2 . 394 

+26 . 79 53 5.6 
+27 .9l 43 4.7 
+30.61 38 3.8 
+31.40 30 3.0 
+32 e47 28 2.8 
+%e93 22 2.2 
+33 22 2.2 

+2.400 ' +33.52 22 2.2 

! 

i I 
i 



DISTRIHJTION LIST 

NASA and JPL 

National Aeronsutics & Space Admin. 
Scient i f ic  and Technical Information 

College Park, Maryland 20740 
A t t n :  NASA Representative 

Faci l i ty  

National Aeronautics & Space Admin. 
Washington, D.C. 20546 
A t t n :  RIW/E.M. Cohn 

National Aeronautics & Space Admin. 
Washington, D.C. 2 0 9 6  
A t t n :  FC/A. M. Greg Andrus 

National Aeronautics & Space Admin. 
Goddard Space Flight C e n t e r  
Greenbelt, Maryland 20771 
A t t n :  Thomas Hennigan, Code 716.2 

National Aeronautics & Space A w n .  
Goddard Space Flight Center 
Greenbelt, Maryland 20771 
A t t n :  Joseph Sherfey, Code 735 

National Aeronautics & Sp+ae Admin. 
Langley Research Center 
Instrument Research Division 
Hampton, Virginia 23365 
A t t n :  John L. Patterson, HS-234 

National Aeronautics & Space Admin. 
Langley Research Center 
Instrument Research Mvision 
Hampton, Virginia 23365 
Attn: M, B. Seyffert, MS 112 

National Aeronautics & Space Admin. 
Lewis Research Center 
21000 Brookpark Road 
Cleveland, Ohio 41135 
A t t n :  N. D. Sanders, MS 302.1 

National Aeronautics & Space Adndn. 
Manned Spacecraft Center 
Houston, Texas 77058 
A t t n :  James T. Kennedy (EE-5) 

National Aeronautics & Space Admin. 
Lewis Research Center 
21000 Brookpark Road 
Cleveland, Ohio 44135 
Attn: R.L. Cummings, MS 500-201 

National Aeronautics & Space Admin. 
Lewis Research Center 
21000 Brookpark Road 
Cleveland, Ohio 44135 
Attn: R.R. Miller,MS 500-202 

National Aeronautics Space Admin. 
Geo. C. Marshall Space Flight Center 
Huntsville, Alabama 3912  
A t t n :  Phi l ip  Youngblood 

National Aeronautics & Space Admin. 
Geo. C. Marshall Space Flight Center 
Huntsville, Alabama 35812 
A t t n :  Richard Boehme 

Bldg. 4487-BB 

National Aeronautics & Space Admin. 
Manned Spacecraft Center 
Houston, Texas 77058 
A t t n :  W i l l i a m  R. Dusenbury 
Propulsion & Energy Systems Branch 
Bldg. 16, Site 1 

National Aeronautics & Space Admin. 
Manned Spacecraft Center 
Houston, Texas 77058 
A t t n :  Robert Cohen 
Gemini Project Office 

National Aeronautics & Space Admin. 
Manned Spacecraft Center 
Houston, Texas 77058 
A t t n :  Richard Ferguson (EP-5) 

National Aeronautics & Space Admin. 
Manned Spacecraft Center 
Houston, Texas 77058 
A t t n :  Forrest E. Eastman (EE-4) 



National Aeronautics & Space Admin. 
Ames Research Center 
Pioneer Project 
Moffett Field, California 94035 
Attn: James R. Swain/A. S. Herttog 

National Aeronautics & Space Admin. 
Ames Research Center 
Moffett Field, California 94035 
A t t n :  Jon Rubenzer 

Biosatell i te Project 

Jet  Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, California 91103 
A t t n :  Aiji Uchiyama 

Department of the A n w  

U.  S. A r m y  Engineer R&D Labs. 
Fort Belvoir, Virginia 22060 
Electr ical  Power Branch 
SMOFBEP 

Commanding Officer 
U. S. A m y  Electronics R&D Labs. 
Fort Momouth, New Jersey 07703 
A t t n :  Power Sources Division 

Code SELRA/PS 

Research Office 
Rand A Directorate 
Army Weapons Command 
Rock Island, I l l i n o i s  61201 
A t t n :  Mr. G. Riensmith, Chief 

U. S. A r m y  Research Office 
Box CM, Duke Station 
Durham, North Carolina 27706 
A t t n :  D r .  Wilhelm Jorgensen 

Natick Laboratories 
Clothing and Organic Materials Dive 
Natick, Massachusetts 01760 
Attn: Robert N. Ikalsh/G.A. Spano 

Harry Diamond Laboratories 
Room 300, Building 92 
Conn. Ave. & Van Ness St ree t ,  N.W. 
Washington, DOC . 20438 
A t t n :  Nathan Kaplan 

- 88 - 

Army Material Command 
Research Division 
AMCRD-RSCM-T-7 
Washington, D.C. 20315 
A t t n :  John W. Crellin 

A r m y  Material Command 
Development Division 
AMCRD- DE-MO- P 
Washington, D.C. 20315 
A t t n :  Marshall D. Aiken 

U . S. Army TRECOM 
Fort Eustis, Virginia 23604 
Attn: D r .  R. L. Echols (SMOFE-PSG) 

U. S. Army TRECOM 
Fort Eustis, Virginia 23604 
A t t n :  Leonard M. Bartone (SMOFE-ASE) 

U. S. Amy Mobility Command 
Research Division 
Center Line, Michigan 48090 
A t t n :  0. Renius (AMSMO-RR) 

Demrtment of the Navy 

Office of Naval Research 
Washington, D O C  . 20360 
Attn: Head, Power Branch, Code 429 

Office of Naval Research 
Department of the Navy 
Wishington, D.C. 20360 
A t t n :  H. W. Fox, Code 425 

Naval Research Laboratory 
Washington, D.C. 20390 
A t t n :  D r .  J. C. White, Code 6160 

U .  S. Navy 
Marine Engineering Laboratory 
Annapoli s , Maryland 21402 
A t t n :  J. H. Harrison 

Bureau of Naval Weapons 
Department of the Navy 
Washington, D.C. 20360 
A t t n t  Whitewell T. Beatson 
(CBde RAAB-32) 



Bureau of Naval Weapons 
Department of the Navy 
Washington, D.C. 20360 

I A t t n :  Milton Knight (Code RAAE-50) 
I 

Naval Ammunition Depot 
Crane, Indiana 47522 
A t t n :  E. Bruess/H. Shultz 

I 
Naval Ordnance Laboratory 
Department of the Navy 
Corona, California 91720 
Attn: W i l l i a m  C. Spindler (Code 441) 

Naval Ordnance Laboratory 
Department of the Navy 
Si lver  Spring, Maryland 20900 
Attn: 

I 

Phi l ip  B. Cole (Code WB) 

Bureau of Ships 
Department of the Navy 
Washington, D .C . 20360 
A t t n :  C. F. Viglot t i  (Code 660) 

Bureau of Ships 
Department of the Navy 
Washington, D O C  . 20360 
Attn: Bernard B. Rosenbaum (Code 340) 

Department of the Air Force 

Space Systems Division 
Los Angeles AF Station 
Los Angeles, California 90045 
Attn: SSSD 

Fl ight  Vehicle Power Branch 
Aero Propulsion Laboratory 
kright-Patterson AFB, Ohio 45433 
Attn: James E. Cooper 

Air Force Cambridge Research Lab. 
L. G. lanscom Field 
Bedford, Massachusetts 81731 
A t t n :  Commander (CRO) 

Rome Air Development Center, ESD 
Griffis AFB, New Touk 13442 
A t t n :  Frank J. Mollura ( R A S H )  

Other Government Agencies 

National Bureau of Standards 
Washington, D.C. 202% 
Attn: Dr.  W. J. Hamer 

Office, TIDR&E, USE & BSS 
The Pentagon 
Washington , D.C. 20310 
A t t n :  G. B. Wareham 

Mr. Donald B. Hoatson 
Amy Reactors, DRD 
U.S. Atomic Energy Commission 
Washington, D.C. 20345 

Pnivate Organizations 

Aeroject-General Corporation 
Chemical Products Division 
Azusa, California 91702 
Attn: Dr. S. 0. Rosenberg 

Aeronutronic Division 
Philco Corporation 
Ford Road 
Newport Beach, California 92660 

Aerospace Corporation 

Los Angeles, California 90045 
A t t n :  Library 

P.  0. Box 95085 

Allis-Chalmers Manufacturing Co. 
1100 South 70th Street  
Milwaukee, Wisconsin 5 2 0 1  
Attn: Dr. P. Joyner 

American University 
Mass. & Nebraska Avenues, NOW. 
Washington, D.C. 20016 
A t t n :  Dr .  R. T. Foley, 

Chemistry Department 

Arthur D, L i t t l e ,  Inc. 
Acorn Park 
Cambridge, Hassachusetts 02140 
A t t n :  Dr. Ellery W. Stone 



Atomics Internat ional  Division 
North American Aviation, Inc. 
8900 De Sota Avenue 
Canoga Park,  California 91304 
A t t n :  D r .  H. L. Recht 

Bat te l le  Memorial In s t i t u t e  
505 King Avenue 
Columbus, Ohio 43201 
Attn: D r .  C. L. Faust 

B e l l  Laboratories 
Murray H i l l ,  New Jersey 07971 
Attn: U. B. Thomas/D. A. Feder 

The b e i n g  Company 
P. 0. Box 98124 
Sea t t l e ,  Washington 98124 

Borden Chemical Company 
Central Research Lab. 
P. 0. Box 9524 
Philadelphia, Pennsylvania 19124 

Burgess Battery Company 
Foot of Exchange S t r e e t  
Freeport, I l l i n o i s  61032 
Attn: D r .  Howard J. Strauss  

C & D Batteries 
Division of Elec t r ic  Autoli te Co. 
Conshohocken, Pennsytvania 19428 
Attn: D r .  Eugene Willihngenz 

Calvin College 
Grand Rapids, Michigan 49506 
A t t n :  Prof. T. P. Mrkse 

Catalyst  Research Corporation 
6101 Fa l l s  Road 
Baltimore, Maryland 21209 
Attn: J. P. Wooley 

Chem Cell Inc. 
3 Central Avenue 
East Newark, N.J. 07029 
Attn: Pe ter  D. Richman 

Delco Remy Division 
General Motors Corporation 
2401 Columbus Avenue 
Anderson, Indiana 46011 
Attn: Dr .  J. J. Lander 

Douglas Aircraf t  Company, Inc . 
Astropower Laboratory 
2121 Campus Drive 
Newport Beach, California 92663 
Attn: Dr. Carl Berger 

Dynatech Corporation 
17 Tudor S t r ee t  
Cambridge, Massachusetts 02138 
A t t n :  R. L. Wentworth 

Eagle-Picher Company 
Post Office Box 47 
Joplin,  Missouri 64802 
A t t n :  E. M. Morse 

Elgin National Watch Company 
107 National S t r ee t  
Elgin, I l l i n o i s  60120 
Attn: T. Boswell 

E lec t r i c  Storage Battery Co. 
Missile Battery Division 
2510 Louisburg Rd. 
Raleigh, North Carolina 27604 
A t t n :  A. Chreiteberg 

E lec t r i c  Storage Battery Co. 
Carl F. Norberg Research Center 
19 West College Avenue 
Yardley, Pennsylvania 19068 
Attn: D r .  R.A.Schaefer/W. S. Herbert 

Electrochimica Corporation 
1140 O'Brien Drive 
Menlo Park, California 94025 
A t t n :  D r .  Morris Eisenberg 

Electro-Optical Systems, Inc. 
300 North Halstead 
Pasadena, California 91107 
Attn: E. Findl 

Emhart Manufacturing Co. 

Hartford, Connecticut 06101 
A t t n :  D r .  W. P. Cadogan 

BOX 1620 

Engelhard Indus t r ies ,  Inc. 
497 DeLancy S t r ee t  
Newark, New Jersey 07105 
Attn: Dr .  J. G. Cohn 

- 90 - 



D r  . Arthur Fleischer 
466 South Center Street  
Orange, New Jersey 07050 

General Electr ic  Company 
Schenectady, New York 12301 
A t t n :  D r .  R.C. Osthoff/Dr. W. Carson 

Advanced Technology Lab. 

General Electr ic  Company 
Missile & Space Division 
Spacecraft Department 
P. 0. Box 8555 
Philadelphia, Pennsylvania 19101 
Attn: E. W. Kipp, Room T-2513 

General Electr ic  Company 
Battery Products Section 
P. 0. Box 114 
Gainsville , Florida 32601 

General Electr ic  Company 
Research Laboratories 
Schenectady, New York 12301 
Attn: Dr .  H. Liebhafsb 

General Motors-Defense Research Labs. 
6767 Holl is ter  S t ree t  
Santa Barbara, California 93105 
A t t n :  Dr. J .S.Smatko/Dr. C.R. Russell 

Globe-Union, Incorporated 
900 East Keefe Avenue 
Milvaukee, Wisconsin 53201 

Gould-National Batteries, Inc. 
Engineering and Research Center 
2630 University Avenue, S.E. 
Minneapolis, Minnesota 55418 
A t t n :  J. F. Donahue 

Gulton Industr ies  
Alkaline Battery Division 
212 Durham Avenue 
Metuchen, New Jersey 08840 
Attn: Dr. Robert Shair 

Hughes Aircraf t  CorporatAon 
Centinda Ave. & Teale St. 
Culver City, California 90230 
Attn: T. V. Carvey 

Hughes Aircraft  Corporation 
Bldg. 366, M.S. 524 
E l  Segundo, California 90245 
A t t n :  R. B. Robinson 

Hughes Research Laboratories Corp. 
3011 Mal ih  Canyon Rd. 
Mal ih ,  California 90265 

ITT Research Ins t i t u t e  
10 West 35th S t ree t  
Chicago, I l l i n o i s  60616 
A t t n :  Dr.  H. T. Francis 

Ins t i t u t e  f o r  Defense Analyses 
R&E Support Division 
400 Amy-Navy Drive 
Arlington, Virginia 22202 
Attn: MrA Hamilton/Dr. Szego 

Idaho State  University 
Department of Chemistry 
Pocatello, Idaho 83201 
Attn: Dr .  G. Myron Arcand 

Ins t i t u t e  of Gas Technology 
State and 34th Street  
Chicago, I l l i n o i s  60616 
A t t n :  B. S. Baker 

Johns Hopkins University 
Applied Physics Laboratory 
8621 Georgia Avenue 
Silver Spring, Maryland 20910 
A t t n :  Hichard Cole 

Johns-Manville M E  Center 
P. 0. Box 159 
Manville, New Jersey 08835 
Attn: J .  S. Parkinson 

Leesona Moos Laboratories 
Lake Success Park, Community Drive 
Great Neck, New York 11021 
Attn: Dr. H. Oswin 

Livingston Electronic Corporation 
Route 309 
Montgomeryville , Pennsylvania 18936 
Attn: William F. Meyers 

Lockheed Missiles 4k Space Company 
3251 Hanover S t ree t  
Palo Alto, California 93404 
A t t n :  Library 

Ma3.)ory Battery Company 
60 Elm Stree t  
North Tarryton, New York 10593 
A t t n :  R. R. Clune 



P. R. Mallory & Co., Inc. 
Northwest Industr ia l  Park 
Burlington, Massachusetts 02103 
Attn: Dr .  Per Bro 

P .  R. Mallory & Co., Inc. 
3029 E. Washington St ree t  
Indianapolis, Indiana 46206 
A t t n :  Technical Librarian 

Melpar 
Technical Infonuation Center 
3000 Arlington Blvd. 
Fal ls  Church, Virginia 22046 

Metals and Controls Mvision 
Texas Instruments, Inc. 
34 Forest Street  
Attleboro, Massachusetts 02703 
Attn: D r .  E. M. Jos t  

Midwest Research Ins t i t u t e  
425 Volker Boulevard 
Kansas City, Missouri 64110 
A t t n :  Dr. B. W. Beadle 

Monsanto Research Corporation 
Everett, Massachusetts 02149 
Attn: Dr .  J. 0. Smith 

North Amerhan Aviation, Inc. 
Rocketdyne Mvision 
6633 Canoga Avenue 
Canoga Park, California 91303 
Attn: Ubrary 

North American Aviation, Inc. 
12214 Lakewood Boulevard 
Downey , California 90241 
Attn: Burton M. Otzinger 

D r .  John Owen 
P. 0. Box 87 
Bloomfield, New Jersey 07003 

Power Information Center 
University of Pennsylvania 
Moore School Building 
200 South 33rd St ree t  
Philadelphia , Pennsylvania 19104 

Power Sources Mvision 
Whittaker Corporation 
9601 Canoga Avenue 
Chatsworth, California 91311 
Attn: D r .  M. Shaw 

Philco Corporation 
Mvision of the Ford Motor Co. 
Blue Bell, Pennsylvania 19422 
Attn: Dr .  Ph i l l i p  Cholet 

Radiation Applications, Inc. 

Long Island City, New York 11101 
36-40 37th Stree t  

Radio Corporation of America 
Astro Division 
Hightatown, New llersey 08520 
A t t n :  Seymour Winkler 

Radio Corporation of America 
P. 0. Box 800 
Princeton, New Jersey 08540 
Attn: I. Schulman 

Radio Corporation of America 
Somerville, New Jersey 08873 
Attn: D r .  H. S. Lozier 

Southwest Research Ins t i t u t e  
8500 Culebra Road 
San Antonio, Texas 78206 
Attn: D r .  Jan Al 

Sonotone Corporation 
Saw Mill River Road 
Elmsford, New York 10523 
Attn: A. hndel 

Texas Instruments, Inc. 
13500 North Central Expressway 
Dallas, Texas 75222 
Attn: Dr. Isaac Trachtenberg 

Thomas A. Edison Research Laboratory 
McGraw Edison Company 
Watchung Avenue 
West Orange, New Jersey 07052 
Attn: D r .  P. F. Grieger 

TRW Systems, Inc. 
One Space Park 
Redondo Beach, California 90278 
Attn: Dr .  A. Krause,Bldg. 60, h 929 

TRW Systems Inc. 
One Space Park 
Redondo Beach, California 90278 
A t t n :  Dr .  Herbert P. Silveman 



I TRW, Inc. 
23555 Euclid Avenue 
Cleveland, Ohio 44117 
Attn: Librarian 

Tyco Laboratories, Inc. 
Bear H i l l  
Hickory Drive 
Waltham, Massachusetts 0 2 1 9  

I Attn: W. W. Elurnett 

Union Carbide Corporation 
Development Laboratory Library 
P. 0. Box 6056 
Cleveland, Ohio 44101 

I Union Carbide Corporation 
Panaa Research Center 
P. 0. Box 6116 
Cleveland, Ohio MlOl 
Attn: Library 

University of California 
Space Science Laboratory 
Berkeley California 94720 
Attn: Dr .  C. W. Tobias 

University of Pennsylvania 
Electrochemistry Laboratory 
Philadelphia , Pennsylvania 19104 

Western Electric Company 
Suite 802, RCA Bldg. 
Washington, D. C. 20006 
Attn: R. T. Fiske 

Westhghouse Electr ic  Corporation 
Research & Development Center 
Churchill Borough 
Pittsburgh, Pennsylvania 15235 

Whittaker Corporation 
P. 0. Box 337 
Newbury Park, California 91320 
A t t n :  Mr. John Rhyne 

Yardney Electr ic  Corporation 
40-50 Leonard Street  
New York, New York 10013 
A t t n :  Dr. Geo. Dalin 

Whittaker Corporation 
3850 Olive S t ree t  
Denver, Colorado 80237 
Attn: Borch Wendir 

= 93 - 


